• Title/Summary/Keyword: starch synthesis

Search Result 95, Processing Time 0.03 seconds

Construction of Bifunctional Fusion Enzyme between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Sulfolobus acidocaldarius and Overexpression in E. coli

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.240-245
    • /
    • 2000
  • Two genes encoding maltooligosyltrehalose synthase (SaMTS) and maltooligosyltrehalose trehalohydrolase (SaMTH) were isolated from a hyperthermophilic microorganism, Sulfolobus acidocaldarius (ATCC 49462). ORFs of the SaMTS and SaMTH genes are 2,163 and 1,671 bp long and encode 720 and 556 amino acid residues, respectively. A bifunctional fusion enzyme (SaMTSH) was constructed through the gene fusion of SaMTS and SaMTH. Recombinant SaMTS, SaMTH, and SaMTSH fusion enzyme were overexpressed in E. coli BL21. SaMTS and SaMTH produced trehalose and maltotriose from maltopentaose in a sequential reaction. SaMTSH fusion enzyme catalyzed the sequential reaction in which the formation of maltotriosyltrehalose was followed by hydrolysis leading to the synthesis of trehalose and maltotriose. The SaMTSH fusion enzyme showed the highest activity at pH 5.0-5.5 and $70-75^{\circ}C$. SaMTS, SaMTH, and SaMTSH fusion enzyme were active in soluble starch, which resulted in the production of trehalose.

  • PDF

Sucrose Synthase, UDP-glucose pyrophosphorylase and ADP-glucose Pyrophosphorylnse in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • The seasonal variation in the activity of sucrose synthase, ADP-glucose pyrophosphorylase and UDP-glucose pyrophosphorylase in roots of Panax ginseng C.A.Meyer have been studied. It was revealed that sucrose synthase and ADP-glucose pyrophosphorylase are adaptive enzymes and can serve as markers of sink strength, while UDP-glucose pyrophosphorylase is the maintenance enzyme. The average day temperature exceeded 24。C appeared to cause the disturbance in refilling process, affecting the starch synthesis. Study on the dependence of oxygen consumption in stele tissue with temperature revealed the sharp accelerating of this process after 24。C.

  • PDF

Synthesis of Transglucosylated Xylitol Using Cyclodextrin Glucanotransferase and Its Stimulating Effect on the Growth of Bifidobacterium. (Cyclodextrin Glucanotransferase를 이용한 당전이 Xylitol의 합성과 비피더스균 생육증식 효과)

  • 김태권;박동찬;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.442-449
    • /
    • 1998
  • Several transglucosylated xylitols were synthesized using intermolecular transglucosylation reaction of cyclodextrin glucanotransferase (CGTase) and their bifidogenic effects were investigated. The CGTase from Thermoanaerobacter sp. showed the highest transglycosylation activity on xylitol compared to those obtained from other strains. Extruded starch was identified to be the most suitable glucosyl donor for transglucosylation reaction on xylitol molecule by CGTase. The optimum reaction conditions for transglucosylation were also studied using extruded starch as a glucosyl donor. The transglucosylated xylitols were purified by activated carbon column chromatography with ethanol gradient elution from 0 to 18%, and their chemical structures were analyzed by fast atom bombardment mass spectrometer, $\^$13/C-nuclear magnetic resonance spectrometer, and enzyme digestion method. Two transglucosylated xylitol, F-I and F-II, which had one or two glucose molecules attached to maternal xylitol by ${\alpha}$-1,4-linkage, were mainly obtained. F-II showed increased stimulation effect on the growth of Bifidobacterium breve compared to xylitol, indicating the possibility utilized as a new functional alternative sweetners having bifidogenic effects.

  • PDF

Effects of Water Potential on Germination and Chemical Composition of Soybean, Peanut and Corn Seeds (수분포텐셜이 콩, 땅콩 및 옥수수 종자의 발아와 화학성분에 미치는 영향)

  • 성락춘;김형곤;박세준
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • This experiment was conducted to investigate the effects of water potential by PEG treatment on germination and quantitative changes of seed storage reserves of soybean [Glycine max (L.) Merr.], peanut(Arachjs hypogaea L.) and corn(Zea may L.). Water potential of PEG(M.W. 10, 000) solution as germination media was 0.0, -0.2, and -0.5MPa. The highest moisture uptake rate was found in soybean seedlings among three crops. Moisture content of seedlings of three crops was decreased at -0.5MPa treatment and seedling length was delayed with water potential decrement. As water potential decreased, decreasing rate of protein content of the seedlings compared to seeds was declined in soybean and peanut. Decreasing rate of starch content of the seedlings was decreased in corn at -0.5MPa treatment. Increasing rate of sugar content of the seedlings was markedly decreased at -0.5MPa treatment in all crops. The results of this experiment showed that availability of moisture and synthesis of sugar for seed germination were influenced below -0.5MPa water potential in three crops.

  • PDF

Reduction of quality of rice due to submergence during ripening stage and identification of its physiological cause

  • Lee, Hyeon-Seok;Back, Jung Seon;An, Sung Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Hwang, Woon-Ha;Yoon, Jong Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.227-227
    • /
    • 2017
  • This study was conducted to analyze the reduction of quality and ripening rate of rice due to submergence during ripening stage and identify the physiological cause. Korean japonica type rice cultivars, Nampyeong was used in the experiment. The following 7, 14 day after heading, they were then moved into submergence treatment facility and we conducted the tests under three different submergence conditions - T1(clear water and overhead submergence), T2(Muddy water and exposure of Flag leaf end ), T3(Muddy water and overhead submergence), and the treatment lasted for 4days. The decrease of ripening rate was most severe in T3 treatment at 7days after heading, and the decrease of head rice ratio was most severe in T3 treatment at 14days after heading. Meanwhile the starch synthesis was inhibited, as the supply of assimilation products was inhibited in grain during the submergence treatment. And in stem, sucrose content was increased because the soluble carbohydrates accumulated before heading were decomposed. These changes may be due to the consumption of respiratory substrate in anaerobic conditions and the inhibition of the production of photosynthetic products by light interception. In order to see what kind of reaction occurs at the molecular level, we examined the degree of RNA expression in grain, stem and leaf. First, the expression of rna associated with starch synthesis in grain was decreased in all submergence treatment. and especially Ospul(DBE) was more decreased in 14days after heading treatment than 7days after heading treatment. This difference can explain the result that the decrease of head rice ratio was more severe at 14days after heading. And in stem, the expression of rna associated with the supply of assimilation products was decreased in submergence treatment. Finally in leaf, the expression of rna(ADH, ALDH) associated with anaerobic respiration was increased, while the expression of rna associated with photosynthesis was decreased. These results of physiological analysis can used to develop the cultivation technique and to offer the information for breeding the cultivars with tolerant characteristics to submergence stress during ripening stage in rice.

  • PDF

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF

DETECTION OF PHYSIOLOGICAL PROCESSES IN WHEAT BY NIR

  • Salgo, A.;Gergely, Sz.;Scholz, E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1158-1158
    • /
    • 2001
  • Fast and dynamic biochemical, enzymatic and morphological changes occur during the so-called generative development and during the vegetative processes in seeds. The most characteristic biochemical and compositional changes of this period are the formation and decline of storage components or their precursors, the change of their degree in polymerization and an extensive change in water content. The aim of the present study was to detect the maturation processes in seed nondestructively and to verify the applicability of near infrared spectroscopic methods in the measurement of physiological, chemical and biochemical changes in wheat seed. The amount and variation of different water “species” has been changed intensively during maturation. Characteristic changes of three water absorption bands (1920, 1420 and 1150 nm) during maturation were analysed. It was concluded that the free/bound transition of water molecules could be followed sensitively in different region of NIR spectra. Kinetic changes of carbohydrate reserves were characteristic during maturation. An intensive formation and decline of carbohydrate reserves were observed during early stage of maturation (0 -13 days, high energy demand). An accelerated formation of storage carbohydrates (starch) was detected in the second phase of maturation. Five characteristic absorption bands were analysed which were sensitive indicators the changes of carbohydrates occurred during maturation. Precursors of protein synthesis and the synthesis of reserve proteins and their kinetic changes during maturation were followed from NIR spectra qualitative and qualitatively. Dynamic formation of amino acids and the changes of N forms were detected by spectroscopic, chromatographic and by capillary electrophoresis methods. Calibration equations were developed and validated in order to measure the optimal maturation time protein and moisture content of developing wheat seeds. The spectroscopic methods are offering chance and measurement potential in order to detect fine details of physiological processes. The spectra have many hidden details, which can help to understand the biochemical background of processes.

  • PDF

Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu

  • Min Li;Tao Li;Jia Zheng;Zongwei Qiao;Kaizheng Zhang;Huibo Luo;Wei Zou
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1337-1350
    • /
    • 2023
  • Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35℃, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.

Bifunctional Recombinant Fusion Enzyme Between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Thermophilic Microorganism Metallosphaera hakonensis

  • Seo, Ju-Seok;An, Ju-Hee;Cheong, Jong-Joo;Choi, Yang-Do;Kim, Chung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1544-1549
    • /
    • 2008
  • MhMTS and MhMTH are trehalose ($\alpha$-D-glucopyranosyl-[1,1]-$\alpha$-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused in-frame in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around $70^{\circ}C$ and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at $70^{\circ}C$ for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above $80^{\circ}C$. The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.

Enzymes of Carbohydrate Metabolism in Cowpea (Vigna unguiculata L. Walp. cv. Caloona) Nodules

  • Lee, Hoi-Seon;Ahn, Young-Joon
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.222-227
    • /
    • 1998
  • The activities of enzymes of carbohydrate metabolism have been determinated in the host cytosolic and bacteroid fractions of cowpea (Vigna unguiculata) nodules formed with B. japonicum I 16 and in roots of nodulated cowpeas. The host cytosolic fraction of the nodules contained the enzymes of glycolytic pathway and the pentose phosphate pathway, whereas the bacteroids had only limited capacity for carbohydrate metabolism and appeared to be insufficient for the complete glycolytic pathway as well as starch synthesis and degradation. In a time-course study, using plants grown in a glasshouse, the acetylene-reducing activity (ARA) of the nodules increased in parallel with the total N content of plants and protein of the nodules until approximately 8 weeks after planting. Subsequently, the weight and size of the nodules and the weight of the plants continued to increase, but there was a sharp decrease in the ARA and the total N content of the plants.

  • PDF