• Title/Summary/Keyword: starch properties

Search Result 1,061, Processing Time 0.034 seconds

Physicochemical Properties of Mung Bean Starch and Texture of Cold-Stored Mung Bean Starch Gels added with Soy Bean Oil (대두유 첨가가 녹두전분의 이화학적 특성과 저온저장 녹두전분겔의 텍스쳐에 미치는 영향)

  • Choi, Eun-Jung;Oh, Myung-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.5
    • /
    • pp.513-520
    • /
    • 2011
  • This study was carried out to investigate the physicochemical properties of mung bean starch and the texture of cold-stored (5$^{\circ}C$ for 0, 24, 48, and 72 hours) mung bean starch gels added with soy bean oil (0, 2, 4, 6%). The swelling power of mung bean starch added with soy bean oil did not significantly change, whereas solubility increased significantly. Soluble carbohydrate content of mung bean starch added with soy bean oil decreased without any significant differences, whereas soluble amylose content decreased significantly. In RVA viscosity, pasting temperature and peak viscosity of mung bean starch added with soy bean oil were not significantly different, whereas minimum viscosity decreased and breakdown and consistency increased significantly. In RVA viscosity, there were no differences according to concentration of soy bean oil. DSC thermograms show that onset temperature of mung bean starch added with soy bean oil did not significantly change, whereas the enthalpy increased in the case of 4% and 6% oil addition. Rupture properties of freshly prepared mung bean starch gels added with soy bean oil increased in the case of 2% and 4% oil addition, and oil addition to mung bean starch gels suppressed changes in rupture properties during cold storage. There were no significant differences in the texture of freshly prepared mung bean starch gels added with soy bean oil, whereas hardness, chewiness, and gumminess of cold-stored mung bean starch gels added with soy bean oil decreased. In the above textural charactristics, there were no differences due to concentration of soy bean oil. Thus, the addition of 2-4% soy bean oil to mung bean starch is appropriate for improving the quality characteristics of cold-stored mung bean starch gels.

Genotypic and Environmental Effects on Flour Properties in Korean Winter Wheat

  • Hong, Byung-Hee;Park, Chul-Soo;Baik, Byung-Kee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Flour characteristics of Korean winter wheat grown in Suwon in 1997 and 1998, and in Suwon and Deokso in 1998 were evaluated. Korean winter wheat cultivars were significantly influenced by years and locations in flour properties such as ash content, protein content, damaged starch content, starch swelling volume and power. Protein content was highly correlated with starch damage and alkaline water retention capacity. There were highly significant correlations between mixing time of mixograph and SDS sedimentation volume. Swelling properties of flour and starch were highly correlated with pasting properties of flour and starch, respectively. Compared to commercial flours for baking, Alchanmil, Gobunmil, Keumkangmil and Tapdongmil showed similar protein content, SOS sedimentation volume and mixograph mixing time. Eunpamil, Geurumil, Olgeurumil, Suwon 258, Suwon 261, Suwon 265, Suwon 275, Suwon 276, Suwon 277, Suwon 278 and Urimil had similar values to commercial noodle flours in SDS sedimentation volume. Alchanmil, Olgeurumil, Suwon 274, Suwon 275, Suwon 276 and Urimil showed higher swelling and pasting properties than the others. Chokwang, Olgeurumil, Suwon 277 and Urimil were similar to commercial cookie flours. Friabilin-absence lines showed higher protein content and starch damage than those of friabilin-presence lines. Absence lines of 1D$\times$2.2 + 1Dy12 subunit in high molecular weight glutenin subunits showed higher SDS sedimentation volume and mixing time of mixograph than those of presence lines.

Physiochemical Properties of Purple-Fleshed Sweet Potato Starch (자색고구마 전분의 이화학적 특성)

  • 박양균;최차란;임종환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Physicochemical properties and gelatinization patterns of purple-fleshed sweet potato starch were studied. Shape of starch granule was round and polygonal, X-ray diffraction pattern was Ca-type. Amylose content was 14.4% which was lower than that of other sweet potato starch. Water binding capacity was 82.54%, swelling power and solubility at 8$0^{\circ}C$ were 27.94% and 15.35%, respectively. Initial temperature of gelatinization was 72$^{\circ}C$ using Brabender/Visco/Amylograph, consistency and setback were lower than those of other sweet potato starch. The peak temperature and enthalpy determined by DSC were 68.1$^{\circ}C$, 1.24cal/g, respectively. The transmittance of starch dispersions in alkaline solutions increased with NaOH concentration up to 0.17N, and then changed slowly at 0.19N or above. The apparent viscosities were similar to the transmittance of starch dispersions in alkaline solutions, but drastically increased above 0.21N.

  • PDF

Physicochemical Properties of Mung Bean Starch Paste, a Main Ingredient of Omija-eui

  • Jang, Keum-Il;Han, Hyun-Jeong;Lee, Kwang-Yeon;Bae, In-Young;Lee, Ji-Yeon;Kim, Mi-Kyung;Lee, Hyeon-Gyu
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.991-995
    • /
    • 2009
  • As a principle ingredient in omija-eui, the physicochemical properties of mung bean starch (MBS) paste were investigated and compared to those of rice and corn starch. The amylose and the protein content of MBS were higher than those of rice or corn starch while the total sugar content and the swelling power of MBS were lower. In addition, the clarity of MBS paste was higher than either rice or corn starch paste. Regarding pasting properties, the peak viscosity and cool paste viscosity of MBS were higher than those of either rice or corn starch. During the freeze-thaw cycle, MBS exhibited higher degree of syneresis than corn and rice starch, which decreased with high starch concentration and heating temperature. The paste properties and freeze-thaw stability of MBS showed a potential for improving the quality of omija-eui.

Effect of Addition of Mung Bean Starch and Sugar on the Textural and Sensory Properties of Dopyun (녹두전분과 설탕의 함량을 달리한 도편(桃片)의 품질특성과 기호도)

  • 박금순;박찬성;박어진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.897-902
    • /
    • 1998
  • This study was conducted to develop the standard recipe of Dopyun according to the various content of mung bean starch and sugar. The effects of mung bean starch(10%, 15%, 20%) and sugar(20%, 30%) were evaluated on textural and sensory properties of Dopyun through the mechanical properties using texture analizer and sensory evaluation. Color was tested by color and color difference meter. For sensory evaluation, higher content of sugar and lower content of mung been starch(sugar 30%, mungbean starch 10%) showed advantages in acceptance fo taste and overall quality. Mechanical properties of hardness, cohesiveness and chewiness of Dopyun were increased significantly in Dopyun with higher content of mung bean starch and sugar. The values of Hunter color system indicated that "L" and "b" values tended to decrease and "a" value increase, as the mung bean starch and sugar proportion increased. In the analysis of correlation between sensory evaluation and acceptance test, it was found that they were highly related. In view of the above results, it came to the conclusion that Dopyun with the addition of 30% sugar and 10% mung bean starch could give the best result among the groups studied.sult among the groups studied.

  • PDF

Molecular Structure and Gelatinization Properties of Turnip Starch (Brassica rapa L.)

  • Kim, Nam-Hee;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.470-473
    • /
    • 2005
  • Starch was isolated from turnip (Brassica rapa L.), and to elucidate the structure-function relationship its structural and physical properties were characterized. Morphological structure of the starch was analyzed by SEM (Scanning Electron Microscopy). Most of the starch granules were spherical in shape with diameter ranging from 0.5-10mm. Apart from larger granules ($<10\;{\mu}m$) which dominated the population size of turnip starch, significant amount of small ($0.5-2\;{\mu}m$) and mid-size granules (${\sim}\;{\mu}m$) were also detected. It was revealed that presumably, erosion damages occurred due to the attack of amylase-type enzymes on the surface of some granules. Branch chain-length distribution was analyzed by HPAEC (High-Performance Anion-Exchange Chromatography). The chain-length distribution of turnip starch revealed a peak at DP12 with obvious shoulder at DP18-21. The weight-average chain length ($CL_{avg}$) was 16.6, and a large proportion (11.8%) of very short chains (DP6-9) was also observed. The melting properties of starch were determined by DSC (Differential Scanning Calorimetry). The onset temperature ($T_o$) and the enthalpy change (${\Delta}H$) of starch gelatinization were $50.5^{\circ}C$ and 12.5 J/g, respectively. The ${\Delta}H$ of the retrograded turnip starch was 3.5 J/g, which indicates 28.2% of recrystallization. Larger proportion of short chains as well as smaller average chain-length can very well explain relatively lower degree of retrogradation in turnip starch.

Characteristics of non-waxy rice starch/gum mixture gels (멥쌀 전분과 검물질 혼합물 겔의 특성)

  • Shin Malshick;Kwon Ji-Young;Song Ji-Young
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.942-949
    • /
    • 2005
  • To improve the textural properties and stabilize the structure and gel matrix of non-waxy rice starch gels, non-waxy rice starch/gum mixture gels were prepared from various food gums, gum arabic, guar, algin, deacyl gellan, xanthan and gellan gums. The morphological and textural properties and freeze-thaw stability of their gels were compared. Rice starch/gum mixture gels with various gums formed a more homogeneous gel matrix with smaller particle size than rice starch gel without Em, but the trends differed depending on the gum types. The textural properties of rice starch/gum mixture gels were changed with the gum types. The shape of the rice starch/gum mixture gel matrix was desirable when mixed with gellan and algin. The textural properties of gels hardened in the rice starch/algin mixture gel and softened in the rice starch/algin mixture gel. The rice starch gels showed V-type crystallinity by x-ray diffractometer, but the peak at $2\theta$ = $20^{o}$ was decreased with increasing gum addition. The freeze-thaw stability increased with increasing gum addition. Gellan and algin were especially effective.

A Study on the Physical Properties of Starch Adhesive by Temperature in Carrier and Main Part for the Stain Hall Method (Stain Hall 제호방식에 있어서 캐리어부 및 메인부에서의 온도에 따른 접착제의 물성변화에 관한 연구)

  • Lee, Soo-Keun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • In this study, the physical properties of starch adhesive by temperature in carrier and main part for the Stain-Hall method were analyzed. The temperatures of starch solutions in carrier part were inversely proportional to the viscosities. The viscosities of starch solutions were maintained similarly if 2nd temperatures were same independent on the those of the 1st temperatures in carrier part. the starch solutions showed similar viscosities in all range except the viscosity of the solutions in $30^{\circ}C\;and\;40^{\circ}C$. The viscosities of starch adhesives in main part were in proportion to those of starch solutions in carrier part. The viscosities of starch adhesives in main part were maintained similarly if 2nd temperatures in carrier part were same. The viscosities of starch adhesives in main part were low when the ultimate temperature of starch solutions in carrier part were high.

  • PDF

Studies for Physicochemical and In Vitro Digestibility Characteristics of Flour and Starch from Chickpea (Cicer arietinum L.)

  • Chung, Hyun-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Flour and isolated starch from chickpea (desi type, 328S-8) were evaluated for their in vitro digestibility and physicochemical properties. The protein content, total starch content and apparent amylose content of chickpea flour and isolated starch were 22.2% and 0.6%, 45.8% and 91.5%, and 11.7% and 35.4%, respectively. Chickpea starch granules had an oval to round shape with a smooth surface. The X-ray diffraction pattern of chickpea starch was of the C-type and relative crystallinity was 24.6%. Chickpea starch had only a single endothermic transition (13.3 J/g) in the DSC thermogram, whereas chickpea flour showed two separate endothermic transitions corresponding to starch gelatinization (5.1 J/g) and disruption of the amylose-lipid complex (0.7 J/g). The chickpea flour had a significantly lower pasting viscosity without breakdown due to low starch content and interference of other components. The chickpea starch exhibited significant high setback in the viscogram. The average branch chain length, proportion of short branch chain (DP 6~12), and long branch chains (DP${\geq}$37) of isolated chickpea starch were 20.1, 20.9% and 9.2%, respectively. The rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) contents of chickpea flour and starch were 9.9% and 21.5%, 28.7% and 57.7%, and 7.1% and 9.3%, respectively. The expected glycemic index (eGI) of chickpea flour (39.5), based on the hydrolysis index, was substantially lower than that of isolated chickpea starch (69.2).

Physicochemical Properties of Arrowroot Starch (칡전분의 이화학적 성질)

  • Kim, Kwan;Yoon, Han-Kyo;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.27 no.4
    • /
    • pp.245-251
    • /
    • 1984
  • Physicochemical properties of arrowroot starch were investigated. The starch had blue value of 0.397, alkali number of 10.1 and amylose content of 22.0%. The starch was practically insoluble in water up to $55^{\circ}C$. X-ray diffraction was C pattern, but was close to A pattern. The alkali number, X-ray pattern and viscogram of the starch and retrogadation rate of the starch gels indicated that the properties of the arrow root starch were close to those of cereal starches.

  • PDF