• Title/Summary/Keyword: starch noodle

Search Result 63, Processing Time 0.024 seconds

Physicochemical characteristics of rice variety for dry-milled flour

  • Yoon, Mi-Ra;Kwak, Jieun;Lee, Jeom-Sig;Won, Yong-Jae;Kim, Mi-Jung;Choi, Induck;Jeon, Yong-Hee;Kim, Sun Lim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.294-294
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the main agricultural crops in Asian countries, including Korea, and is considered as the most important staple food in the world. Rice is also processed into flour, which is consumed through various foods such as cake, noodle, bread, and confectionary. Rice flour quality is highly dependent on variety and milling conditions. Producing rice flour with fine particles is more difficult than wheat flour because of its grain hardness. The Korean rice varieties representing different amylose contents were selected for this study. The relationship between the morphological and starch characteristics of rice kernels and the appropriate varieties for producing good-quality, dry-milled rice flour were examined. The hardness of the rice kernels was determined by measuring the pressure at the grain breakage point. The damaged starch content of the rice flour was determined using a Megazyme starch damage assay kit. The particle-size distribution of the rice flour was measured as the volume-base distribution using a laser-diffraction particle size analyzer. The mean particle-size distribution of the dry-milled flour obtained was between $65.3{\sim}105.1{\mu}m$ among the rice varieties. The opaque, non-glutinous, Seolgaeng rice demonstrated a narrow peak at the fine size, whereas the entire particle-distribution range for other varieties was wide. Seolgaeng exhibited significantly lower damaged starch content of dry-milled flour than the other varieties (p < 0.05). Seolgaeng showed lowest in energy consumption on rice flour production with 200 mesh particle size. Accordingly, it is possible to produce dry-milled rice flour which is similar to wheat flour that would considerably reduce milling costs.

  • PDF

Preparation of Noodle with Laver Powder and its Characteristics (김분말을 이용한 국수의 제조 및 특성)

  • Lee, Jang-Wook;Kee, Hae-Jin;Park, Yang-Kyun;Rhim, Jong-Whan;Jung, Soon-Teck;Ham, Kyung-Sik;Kim, In-Chul;Kang, Seong-Gook
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.298-305
    • /
    • 2000
  • Laver noodles were prepared with composite flour containing various ratios of laver powder sifted through 100-mesh sieve and their cooking characteristics were evaluated. Farinograph test results with the composite flour showed that water absorption rate increased linearly as the content of laver powder increased from 2% to 8%, while dough stability decreased linearly with the laver content. Dough development time increased 2.65-3.75 times by adding laver powder. DSC endotherms indicated that onset temperature $(T_o)$, peak temperature $(T_p)$, and conclusion tempearture $(T_c)$ of composite flour starch gelatinization shifted to a higher temperatures as the laver powder content increased. Difference in laver species (e.g., Porphyra dentata and Porphyra tenera) did not affect dough characteristics and surface color of doughs and noodles made with composite flours. From the sensory evaluation test for noodles, a laver noodle containing 4% roasted Porphyra dentata was the most preferred among the noodles tested.

  • PDF

Effects of Blends of Low-Protein Winter Wheat Flour and Barley Byproducts on Quality Changes in Noodles

  • Lee, Na-Young
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.361-366
    • /
    • 2016
  • The physicochemical characteristics of fresh noodles made with blends of low-protein wheat flour and barley byproduct (BBP, $250{\mu}m$) were investigated. The crude protein contents (PC) of flour from Goso and Backjoong cultivars were 7.91% and 7.67%, respectively. PC and ${\beta}$-glucan contents from the BBP were 14.10% and 3.11%, respectively, which were higher than those in wheat flour. The water-holding capacity (WHC) of various blends was increased as a function of BBP but not gluten contents. Goso flour had the highest starch content (78.68%), with peak and final viscosities of 3,099 and 3,563 cp, respectively. Peak and final viscosities, trough, breakdown, and setback of the blends were decreased with the addition of BBP. Noodles made with Backjoong had the highest thickness score, while the hardness of noodles made with blends of Goso or Backjoong and 20% BBP were similar to those made from wheat flour only. The WHC of the samples was strongly correlated with PC, crude fiber, and ${\beta}$-glucan. The PC was not correlated with final viscosity, setback, thickness, hardness, gumminess, or chewiness.

Development of the Supplementary Foods for Infants Using Korean Foods - Development and Analysis of Nutrients of the Supplementary Foods - (국내식품을 이용한 이유식 개발에 관한 연구(I) - 이유식의 개발과 성분 및 영양소 분석 -)

  • Min, Sung-hee;Sohn, Kyung-Hee;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.9 no.2
    • /
    • pp.99-104
    • /
    • 1993
  • This study was carried out in order to develop supplementary foods for infants using Korean foods. Thirty-four different kinds of supplementary foods were developed and fourteen representative ones were selected to be analyzed chemically. The results are as follows: 1. The developed supplementary foods were 34 kinds and divided into 3 stages. First stage is designed for the babies just beginning to eat pureed vegetables and fruits. Second stage combined the nutritional attributes of both vegetables and meat. Third stage featured tender, bite-size pieces of meats and vegetables that appealed to the most mature tastes of basies. 2. In the production of prepared foods; water, milk, vegetable juice, fruit juice, and soy milk were used as the liquid source; rice, rice starch, chestnut, noodle, potatoes, sweet potatoes, rice cakes as the carbohydrate source; fish, meats soybean curd, beans, eggs, chicken, cow liver as the protein source; and vegetables and fruits were used as vitamin & mineral source. 3. The approximate composition range of the products were 10.91∼24.46% carbohydrate, 0.15∼6.06% protein, 0.092∼7% fat, 0.13∼ 1.37% ash, 0.63∼36.34% calcium, 0.092∼0.48% iron and 0.42∼16.36% vitamin C.

  • PDF

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2003.10a
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

Quality Characteristics and Optimization of Fish-Meat Noodle Formulation Added with Olive Flounder (Paralichthys olivaceus) Using Response Surface Methodology (반응표면분석법을 이용한 넙치 첨가 어묵면의 품질 특성 및 제조조건 최적화)

  • Oh, Jung Hwan;Kim, Hyung Kwang;Yu, Ga Hyun;Jung, Kyong Im;Kim, Se Jong;Jung, Jun Mo;Cheon, Ji Hyeon;Karadeniz, Fatih;Kong, Chang-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1373-1385
    • /
    • 2017
  • The purpose of this study was to optimize the formulation for fish-meat noodles added with farmed olive flounder (Paralichthys olivaceus) using response surface methodology. Fish-meat (surimi) from P. olivaceus was prepared by a traditional washing process. Independent variables were Alaska pollack, fish-meat from P. olivaceus, and starch, whereas dependent variables were whiteness and texture. The results for whiteness and texture produced very significant values for whiteness (P<0.001), strength (P<0.001), hardness (P<0.05), breaking force (P<0.001), chewiness (P<0.001), brittleness (P<0.001), extensibility force (P<0.001), and extensibility distance (P<0.05). The optimal formula for fish-meat noodle was addition of 72.00 g Alaska pollack, 11.59 g P. olivaceus, and 15.86 g starch. Experimental values of whiteness, strength, hardness, breaking force, chewiness, brittleness, extensibility force, and extensibility distance under optimal conditions were $59.01{\pm}0.53$, $708.22{\pm}54.12g/cm^2$, $1,390.07{\pm}67.70g/cm^2$, $3,622.77{\pm}92.52g$, $2,686.94{\pm}103.22g$, $278,578.31{\pm}10,150.22g$, $52.22{\pm}2.97g$, $24.14{\pm}3.55mm$, respectively.

Effects of Semolina on Quality Characteristics of the Rice Noddles (세몰리나 첨가가 쌀국수의 품질특성에 미치는 영향)

  • Kim, Byong Ki;Park, Jung Eun;Zu, Genuine
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Durum wheat semolina was added into wet-milled rice flour in order to improve chewy texture, firm bite ("al dente"), and resistance to overcooking of the ordinary rice noodles. Wet noodles were prepared by mixing 0 (control), 5, 10, 15, and 20% (w/w) of semolina per semolina and rice flour mixtures. Vital gluten (4%, w/w) and salt (2%, w/w) were added to form the pliable strands of wet noodles and final moisture contents of the raw mixtures were equalized at 45%. Pasting properties of the suspended flour mixtures as measured by the Rapid Visco Analyser (RVA) showed slight increases (up to $1.2^{\circ}C)$ in pasting temperatures along with the considerable decreases in peak viscosities as semolina increased at over 15%. Reduced shear thinning and retrogradation of the starch solution that leads to hardening of the cooked noodles were indicated by lowered breakdown viscosities and gaps between finaland setback viscosities from the RVA viscogram as semolina increased at over 10%. Reduced water uptake and turbidity increases of the cooking water as caused by the soluble starches from the noodle were also noted as the content of semolina increased. More or less significant (p<0.05) decreases in colorimetric L (lightness) value of the raw- and cooked noodles were observed as semolina increased while a- (redness) and b (yellowness) values were rather increased at the same moment. Textural properties of the cooked noodles such as hardness, springiness, cohesiveness, gumminess, and chewiness from TPA tests were significantly (p<0.05) influenced by added semolina, even at 5%-levels or more. It can be concluded that addition of semolina into rice flour could provide easy handling of the wet noodles without distortion during transportation, integrity and firm bite of the cooked noodles, and less loss of starch to the cooking water in comparison with the ordinary rice noodle. It was finally suggested that optimum level of the semolina in the product was approximately 10% for the quality wet rice noodle products.

Physicochemical Characteristic of Korean Wheat Semolina (우리밀 Semolina의 이화학적 특성)

  • Kim, Yeon-Ju;Kim, Rae-Young;Park, Jae-Hee;Ju, Jong-Chan;Kim, Won-Tae;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.837-842
    • /
    • 2010
  • The physicochemical properties of coarse semolina (CS), medium semolina (MS) and fine semolina (FS) were investigated to research method applied in noodles processing of Korean wheat semolina. Large particle (>250 ${\mu}m$) was over 75% in all semolinas, except for FS, and the particle distribution of MS and durum semolina (DS) was similar. Crude protein and crude ash were the highest in DS followed by CS>MS>FS. Crude lipid of DS was the lowest among samples and CS, MS and FS were not significantly different. L value was high in semolina with small particle distribution and starch damage was the lowest in DS followed by FS>MS. Amylose content was high in DS (29.80%) and FS (29.08%) with small particle distribution. Water binding capacity was the highest in DS, and FS showed the highest water binding capacity among Korean wheat samples. Solubility and swelling power were noticeably high in FS with low starch damage and small particle distribution. In scanning electron microscope (SEM), FS and MS showed distribution of separated fine particles of flours. From these results, the physicochemical properties of semolina showed many differences by grinding methods. FS should be applied in noodles processing through additional examination about characteristic of noodle making.

Microbial Hazard Analysis of Manufacturing Processes for Starch Noodle (당면의 제조공정별 미생물학적 위해요소 분석)

  • Cheon, Jin-Young;Yang, Ji Hye;Kim, Min Jeong;Lee, Su-Mi;Cha, Myeonghwa;Park, Ki-Hwan;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • The purpose of this study was to identify control points through microbiological hazard analysis in the manufacturing processes of starch noodles. Samples were collected from the ingredients, manufacturing processes, equipment and environment. Microbiological hazard assessments were performed using aerobic plate counts (APC), Enterobacteriaceae (EB), E. coli and five pathogens including B. cereus, E. coli O157:H7, L. monocytogenes, Salmonella spp., and S. aureus. The APC levels in raw materials were from 2.12 to 3.83 log CFU/g. The contamination levels after kneading were 4.31 log CFU/g for APCs and 2.88 log CFU/g for EB counts. APCs decreased to 1.63 log CFU/g and EB were not detected after gelatinization, but their levels slightly increased upon cooling, cutting, ripening, freezing, thawing, and separating. The reuse of cooling and coating water would be a critical source of microbial increase after cooling. After drying, APCs and EB counts decreased to 5.05 log CFU/g and 2.74 log CFU/g, respectively, and the levels were maintained to final products. These results suggest that the cooling process is a critical control point for microbiological safety, and the cooling water should be treated and controlled to prevent cross contamination by pre-requisite program.

Quality Characteristics of Long-term Stored Rice (장기 저장된 쌀의 품질 특성)

  • Han, Hye Min;Koh, Bong Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.11
    • /
    • pp.1571-1576
    • /
    • 2012
  • The purpose of this study was to investigate the physicochemical and pasting properties of long-term stored domestic and imported rice supplied for food processing from government-controlled public rice stocks. Goamibyeo, which was bred for processing and harvested in 2011, was selected as the control rice for comparison. Rice was dry-milled, and the amylose contents of stored rice were 12~13%. Stored rice kernels were significantly harder than those of control, whereas damaged starch content and water absorption of flour were not significantly different from those of control. Overall, long-term stored domestic and imported rice showed high peak viscosities along with high viscosities of both hot and cold pastes. Both imported and domestic rice demonstrated insufficient properties for making 100% flat rice noodles or bread. They showed the greatest shrinkage during cooling after baking. Although their levels of cooking loss were less than that of control, stored rice showed a less elastic and softer cooked noodle texture compared to control flour.