• Title/Summary/Keyword: starch accumulation

Search Result 90, Processing Time 0.029 seconds

A Sporolactobacillus-, Clostridium-, and Paenibacillus- Dominant Microbial Consortium Improved Anaerobic RDX Detoxification by Starch Addition

  • Khan, Muhammad Imran;Yoo, Keunje;Kim, Seonghoon;Cheema, Sardar Alam;Bashir, Safdar;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.839-847
    • /
    • 2020
  • In the present study, an anaerobic microbial consortium for the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was selectively enriched with the co-addition of RDX and starch under nitrogen-deficient conditions. Microbial growth and anaerobic RDX biodegradation were effectively enhanced by the co-addition of RDX and starch, which resulted in increased RDX biotransformation to nitroso derivatives at a greater specific degradation rate than those for previously reported anaerobic RDX-degrading bacteria (isolates). The accumulation of the most toxic RDX degradation intermediate (MNX [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine]) was significantly reduced by starch addition, suggesting improved RDX detoxification by the co-addition of RDX and starch. The subsequent MiSeq sequencing that targeted the bacterial 16S rRNA gene revealed that the Sporolactobacillus, Clostridium, and Paenibacillus populations were involved in the enhanced anaerobic RDX degradation. These results suggest that these three bacterial populations are important for anaerobic RDX degradation and detoxification. The findings from this work imply that the Sporolactobacillus, Clostridium, and Paenibacillus dominant microbial consortium may be valuable for the development of bioremediation resources for RDX-contaminated environments.

The Optimum Condition of SSF to Ethanol Production from Starch Biomass (전분질계 바이오매스의 동시당화발효 조건 최적화)

  • Na, Jong Bon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.858-862
    • /
    • 2008
  • The Simultaneous Saccharification and Fermentation(SSF) of ethanol production from potato starch studied with respect to growth pH, temperature, substrate concentration. The glucoamylase and Saccharomyceses cerevisiae have a capacity to carry out a single stage SSF process for ethanol production. The characteristics, termed as starch hydrolysis, accumulation of glucose, ethanol production and biomass formation, were affected with variation in pH, temperature and starch concentration. The maximum ethanol concentration of 12.9g/l was obtained using a starch concentration 30g/l, which represent an ethanol yield of 86%. The optimum conditions for the maximum ethanol yield were found to be a temperature of 38, pH of 4.0 and fermentation time of 18hr. Thus by using the control composite design, it is possible to determine the accurate values of the fermentation parameters where maximum production of ethanol occurs.

Changes in Ear and Kernel Characteristics of Waxy Corn during Grain Filling Stage by Double Cropping (찰옥수수 2기작 재배시 등숙 중 이삭 및 종실 특성 변화)

  • Kim, Mi-Jung;Lee, Jae-Eun;Kim, Jung-Tae;Jung, Gun-Ho;Lee, Yu-Young;Kim, Sun-Lim;Kwon, Young-Up
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.73-82
    • /
    • 2014
  • This study was conducted to investigate the ear and kernel characteristics of waxy corn during ripening by double cropping, and to understand the pattern of starch accumulation in endosperm of waxy corn kernels. Chalok4 and Ilmichal were sown at April 20 (first cropping) and July 20 (second cropping) in 2011~2012. The accumulated temperature from silking to harvesting was about $590{\sim}630^{\circ}C$. It takes 23~24 days when Chalok4 and Ilmichal were sown in April 20, but July 20 sowing takes 32~35 days. Ear length and kernel set length were significantly shorter in second cropping (p<0.05). Kernel length, kernel width, 100-kernel weight, and starch content of waxy corn were increased as ears matured (p<0.05). Growth temperature was getting decreased during the ripening stage of second cropping, the rate of ear and kernel development had slowed. Starch granules started to accumulate in the cells around the pericarp, then developed in the cells around the embryo. In the second cropping, starch granules in the kernel of waxy corn were less compact than the first cropping, harvesting time of waxy corns can be extended. These results will be helpful to farmers for double cropping of waxy corn cultivation and management.

Enzymatic Preparation of Maltooctaose-rich Mixture from Starch Using a Debranching Enzyme of Nostoc punctiforme

  • Choi, Ji-Hye;Kim, Myo-Jeong;Kim, Young-Wan;Lee, Hee-Seob;Park, Jong-Tae;Lee, Byong-Hoon;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.570-573
    • /
    • 2009
  • The debranching enzyme of Nostoc punctiforme (NPDE) is a novel enzyme that catalyzes the hydrolysis of $\alpha$-1,6-glycosidic linkages in starch, followed by the sequential hydrolysis of $\alpha$-1,4-glycosidic linkages. The debranching activity of NPDE is highly specific for branched chains with a degree of polymerization (DP)>8. Moreover, the rate of hydrolysis of $\alpha$-1,4-linkages by NPDE is greatly enhanced for maltooligosaccharides (MOs) with a DP>8. An analysis of reaction mixtures containing various starches revealed the accumulation of maltooctaose (G8) with glucose and maltose. Based on the novel enzymatic properties of NPDE, an MO mixture containing more than 60% G8 with yield of 18 g G8 for 100 g starch was prepared by the reaction of NPDE with soluble starch, followed by ethanol precipitation and gel permeation chromatography (GPC). The yield of the G8-rich mixture was significantly improved by the addition of isoamylase. In summary, a 4-step process for the production of a G8-rich mixture was developed involving the enzymatic hydrolysis of starch by NPDE.

Thermal-and Bio-degradation of Starch-Polyethylene Films Containing High Molecular Weight Oxidized-Polyethylene

  • Kim, Mee-Ra;Pometto, Anthony-L.
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.27-35
    • /
    • 1998
  • Starch-polyethylene films containing high molecular weight(NW) oxidized-polyethylene and prooxidant were prepared , and thermal -and bio-degradability of the films were determined. Increased levels of starch resulted in a corresponding reduction in mechanical strength of the films. However, the addition of high MW oxidized-polyethylene did not significantly reduce the percent elongation of the films. Thefilms containing high MW oxidized-polyethylene andproosicant were degreaded faster than those containing no aadditive during the heat treatment. The films lost their measureable mechanical properties when their weight-average MW(Mw) fell below 50,000. Biodegradability of the films was determined by a pure culture assay with either Streptomyces badius 252.S. setonii 75Vi2 or S. viridosporous T7A, and by an extracellulr enzyme assay using S. setonii 75vi2. The results from pure culture assay indicated that biomass accumulation on the film surface inhibited chemical and biological degradation of the films. The extracellular enzyme assay demonstrated decrease of percent elongation and increase of carbonyl index of the films. Therefore, extracellular enzyme assay could be used as a good method to evaluate biodegradability of the films.

  • PDF

Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality

  • Mushtaq, Roohi;Katiyar, Sanjay;Bennett, John
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Drought stress is one of the major abiotic stresses in agriculture worldwide. We report here a proteomic approach to investigate the impact of post-fertilization drought on grain quality in rice seed endosperm (Oryza sativa cv. IR-64). Plants were stressed for 4 days at 3 days before heading. Total proteins of endosperm were extracted and separated by two-dimensional gel electrophoresis. Not many protein spots showed differential accumulation in drought-stressed samples. More than 400 protein spots were reproducibly detected, including three that were up-regulated and five down-regulated. Mass spectrometry analysis and database searching helped us to identify six spots representing different proteins. Functionally, the identified proteins were related to protein synthesis and carbohydrate metabolism, such as Granule-Bound Starch Synthase (GBSS, Wx protein), which is thought to play a very important role in starch biosynthesis and quality, a very crucial factor in determining rice grain quality.

  • PDF

Quality Evaluation of Fresh ginseng by Soft X-ray and iodine Test. (연X선 및 요드반응에 의한 수삼의 품질평가)

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyung
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.167-171
    • /
    • 1984
  • Soft X-ray is useful to identify the quality of fresh ginseng causing the inside cavity or white pan of red ginseng. The portion of low mass density identified by the difference in absorption of soft X-ray showed lower dry matter density and less or no response to iodine test indicating less accumulation or excess consumption of starch. The inside white part of red ginseng absorbed less X-ray than the normal part did. Probability for identification of the inside cavity or white at fresh ginseng was rather high (80-90%) in screen observation than f'3m reading and seemed to be increased further by using the developed screen and with training. The inside white of red ginseng appeared to be due to starch deficiency. Dry matter density appeared to be better than fresh weight density for the quality criterion.

  • PDF

Phosphorus Accumulation and Utilization Efficiency in Soybean Plant under Atmospheric CO2 Enrichment

  • Sa, Tongmin;Kim, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.16-19
    • /
    • 2001
  • Soybean plants(Glycine max [L.] merr.) inoculated with Bradyrhizobium japonicum MN110 were grown in growth chambers under 400 or $800{\mu}l{\cdot}l^{-1}$ atmospheric $CO_2$ and harvested at 25, 28, 32, and 35 DAT to examine the effect of $CO_2$ enrichment on phosphorus accumulation, uptake, and utilization efficiency during vegetative growth. Phosphorus concentration in leaf was lower in high $CO_2$ plant by 47% at 25 DAT and 34% at 35 DAT than those in the control plant but phosphorus concentrations in stem, root and nodule were not affected by $CO_2$ enrichment. Total phosphorus accumulation increased 3.9-fold in high $CO_2$ plant and 3.2-fold in the control plant between 25 and 35 DAT. Elevated $CO_2$ caused a decrease in the whole plant phosphorus concentration by 35%, which was due almost entirely to a decrease in the phosphorus concentration of leaves. $CO_2$ enrichment increased phosphorus utilization efficiency in the whole plant by 70% during the experimental period. Plants exposed to high $CO_2$ had larger root systems than under ambient $CO_2$, but high $CO_2$ plants had lower P-uptake efficiency. Averaged over four harvests, plants at high $CO_2$ had 38% larger root mass that was more than offset the 20% lower efficiency of P-uptake and accounted for increased phosphorus accumulation by high $CO_2$ plant. These results suggest that the reduced phosphorus concentration in soybean plant under $CO_2$ enrichment may be an acclimation response to high $CO_2$ concentration or enhanced starch accumulation, resulting in the plants to have a lower phosphorus requirement on a unit dry weight basis or a high phosphorus utilization efficiency under these conditions.

  • PDF

Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae (당화된 도토리의 전분이 미세조류 바이오매스 증식과 바이오오일 함량에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • The growth of the algae strain Chlorella vulgaris under mixotrophic conditions in the presence of saccharified acorn-starch (acorn-glucose) was evaluated with the objective of increasing biomass growth and triacylglycerols (TAGs) content. The results indicated that 81.3% of starch was converted to glucose in acorns. C.vulgaris algal strains grown with acorn-glucose produced higher biomass and TAGs content than with autotrophic growth. The highest biomass production and TAGs content with 3 g/L acorn-glucose were 12.44 g/L and 32.9%, respectively. Biomass production with 3 g/L acorn-glucose was 16.4 fold higher than under autotrophic growth condition. These findings suggested that 3 g/L acorn-glucose is economic and efficient for biomass production/productivity and TAGs content of microalgae. This study provides a feasible way to reduce the cost of bioenergy production from microalgae.

Granule-Bound Starch Synthase I (GBSSI): An Evolutionary Perspective and Haplotype Diversification in Rice Cultivars

  • Sang-Ho Chu;Gi Whan Baek;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.219-219
    • /
    • 2022
  • Granule-bound starch synthase I (GBSSI), encoded by the waxy gene, is responsible for the accumulation of amylose during the development of starch granules in rice endosperm. Despite many findings on waxy alleles, the genetic diversity and evolutionary studies are still not fully explored regarding their functional effects. Comprehensive evolutionary analyses were performed to investigate the genetic variations and relatedness of the GBSSI gene in 374 rice accessions composed of 54 wild accessions and 320 bred cultivars (temperate japonica, tropical japonica, indica, aus, aromatic, and admixture). GBSS1 coding regions were analyzed from a VCF file retrieved from whole-genome resequencing data, and eight haplotypes were identified in the GBSSI coding region of 320 bred cultivars. The genetic diversity indices revealed the most negative Tajima's D value in the tropical-japonica, followed by the aus and temperate-japonica, while Tajima's D values in indica were positive, indicating balancing selection. Diversity reduction was noticed in temperate japonica (0.0003) compared to the highest one (wild, 0.0044), illustrating their higher genetic differentiation by FST-value (0.604). The most positive Tajima's D value was observed in indica (0.5224), indicating the GBSSI gene domestication signature under balancing selection. In contrast, the lowest and negative Tajima's D value was found in tropical japonica (-0.5291), which might have experienced a positive selection and purified due to the excess of rare alleles. Overall, our study offers insights into haplotype diversity and evolutionary fingerprints of GBSSI. It ako provides genomic information to increase the starch content of cooked rice.

  • PDF