• Title/Summary/Keyword: star: imaging

Search Result 139, Processing Time 0.029 seconds

Simultaneous observations of SiO v=1 and v=2, J=1-0 masers toward WX Pisces with the KVN+VERA

  • Yun, Youngjoo;Cho, Se-Hyung;Imai, Hiroshi;Kim, Jaeheon;Yoon, Dong-Hwan;Cho, Chi-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.238.1-238.1
    • /
    • 2012
  • We present the results of simultaneous observations of SiO v=1 and 2, J=1-0 maser lines which were carried out with the combined network of the KVN and VERA in 2012 April. The observations were performed toward a long period OH/IR star, WX Psc in order to test the technical and scientific feasibilities of the KVN+VERA combination. The resultant (u, v) coverage of the KVN+VERA combined array enhances the image quality. We confirmed that the distribution and intensity of individual maser spots using the combined network are more reliable compared with the images using the KVN or VERA only. This observation also provides a chance to find a high sensitivity and imaging quality which are comparable to those of VLBA. In addition, the simultaneous observations of two SiO v=1 and 2, J=1-0 maser lines enable us to trace the detail physical environments close to the central star due to different high excitation conditions between two lines at a time.

  • PDF

Orbital Parameters Modeling of High Resolution Satellite Imagery for Mapping Applications (매핑을 위한 고해상 위성영상의 궤도요소 모델링)

  • 유환희;성재열;김동규;진경혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2000
  • A new generation of commercial satellites like IKONOS, SPOT-5 and OrbView-3,4 will have improved features, especially an higher geometric resolution with a better dynamic radiometric range. In addition high precision orbital position and attitude data will be provided by the on-board GPS receivers, IMU(Inertial Measurement Units) and star trackers. This additional information allows for reducing the number of ground control points. Furthermore this information enables direct georeferencing of imagery without ground control points. In our work mathematical models for calculating the satellite orbital parameters of SPOT-3 and KOMPSAT-1 were developed and can be easily extended to process images from other high resolution imaging systems as they become available.

  • PDF

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

Development of Adaptive Optics System for the Geochang 100 cm Telescope

  • Hyung-Chul Lim;Francis Bennet;Sung-Yeol Yu;Ian Price;Ki-Pyoung Sung;Mansoo Choi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.185-198
    • /
    • 2024
  • Korea Astronomy and Space science Institute (KASI) partnered with the Australian National University (ANU) to develop the adaptive optics (AO) system at the Geochang observatory with a 100 cm optical telescope for multiple applications, including space geodesy, space situational awareness and Korean space missions. The AO system is designed to get high resolution images of space objects with lower magnitude than 10 by using themselves as a natural guide star, and achieve a Strehl ratio larger than 20% in the environment of good seeing with a fried parameter of 12-15 cm. It will provide the imaging of space objects up to 1,000 km as well as its information including size, shape and orientation to improve its orbit prediction precision for collision avoidance between active satellites and space debris. In this paper, we address not only the design of AO system, but also analyze the images of stellar objects. It is also demonstrated that the AO System is achievable to a near diffraction limited full width at half maximum (FWHM) by analyzing stellar images.

The Performance of Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Moon, Bongkon;Park, Sung-Joon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Ko, Kyeongyeon;Kim, Mingyu;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2017
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared spectro-photometric instrument optimized to the first Next Generation of small satellite (NEXTSat-1). The off-axis optics was developed to cover a wide field of view with 2 deg. ${\times}$ 2 deg. as well as a wide wavelength range from 0.95 to $2.5{\mu}m$. Considering the simple alignment scheme, afocal system was adapted in the optical components. The mechanical structures were tested under the space environment. We have obtained the accurate calibration data using our test facilities under the operational condition. After the final integration of flight model into the satellite, the communication with the satellite and the functional test were passed. The NISS will be launched in early 2018. During around 2-year operation, the spectro-photometric survey covering more than 100 square degree will be performed. To achieve the major scientific objectives for the study of the cosmic star formation in local and distant universe, the main observational targets will be nearby galaxies, galaxy clusters, star-forming regions and low background regions. Here, we report the final performance of the flight model of the NISS.

  • PDF

OLOR-MAGNITUDE RELATIONS OF EARLY-TYPE DWARF GALAXIES IN THE VIRGO CLUSTER: AN ULTRAVIOLET PERSPECTIVE

  • Kim, Suk;Rey, Soo-Chang;Lisker, Thorsten;Sohn, Sangmo Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Virgo cluster, based on Galaxy Evolution Explorer (GALEX) UV and Sloan Digital Sky Survey (SDSS) optical imaging data. We find that dwarf lenticular galaxies (dS0s), including peculiar dwarf elliptical galaxies (dEs) with disk substructures and blue centers, show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. We also find that the UV CMRs of dEs in the outer cluster region are slightly steeper than that of their counterparts in the inner region, due to the existence of faint, blue dEs in the outer region. We explore the observed CMRs with population models of a luminosity-dependent delayed exponential star formation history. We confirm that the feature of delayed star formation of early-type dwarf galaxies in the Virgo cluster is strongly correlated with their morphology and environment. The observed CMR of dS0s is well matched by models with relatively long delayed star formation. Our results suggest that dS0s are most likely transitional objects at the stage of subsequent transformation of late-type progenitors to ordinary red dEs in the cluster environment, In any case, UV photometry provides a powerful tool to disentangle the diverse subpopulations of early-type dwarf galaxies and uncover their evolutionary histories.

  • PDF

The Detailed Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39.3-40
    • /
    • 2015
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with two linear variable filters is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The dewar inside the telescope is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope and the dewar can be cooled down to around 200K and 80K, respectively in order to reduce the large amount of thermal noise. The stray light analysis is shown that a light outside a field of view can be reduced below 1%. After the fabrications of the parts of engineering qualification model (EQM), the NSS EQM was successfully assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the results of the critical design review for the NISS.

  • PDF

Conceptual Design Study of NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Moon, Bongkon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2013
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

miniTAO/ANIR Paα SURVEY OF LOCAL LIRGs

  • Tateuchi, Ken;Motohara, Kentaro;Konishi, Masahiro;Takahashi, Hidenori;Kato, Natsuko;Uchimoto, Yuka K.;Toshikawa, Koji;Ohsawa, Ryou;Kitagawa, Yutaro;Yoshii, Yuzuru;Doi, Mamoru;Kohno, Kotaro;Kawara, Kimiaki;Tanaka, Masuo;Miyata, Takashi;Tanabe, Toshihiko;Minezaki, Takeo;Sako, Shigeyuki;Morokuma, Tomoki;Tamura, Yoichi;Aoki, Tsutomu;Soyano, Takeo;Tarusawa, Kenfichi;Koshida, Shintaro;Kamizuka, Takafumi;Nakamura, Tomohiko;Asano, Kentaro;Uchiyama, Mizuho;Okada, Kazushi;Ita, Yoshifusa
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.297-298
    • /
    • 2012
  • ANIR (Atacama Near InfraRed camera) is a near infrared camera for the University of Tokyo Atacama 1m telescope, installed at the summit of Co. Chajnantor (5,640 m altitude) in northern Chile. The high altitude and extremely low water vapor (PWV = 0.5 mm) of the site enable us to perform observation of hydrogen $Pa{\alpha}$ emission line at $1.8751{\mu}m$. Since its first light observation in June 2009, we have been carrying out a $Pa{\alpha}$ narrow-band imaging survey of nearby luminous infrared galaxies (LIRGs), and have obtained $Pa{\alpha}$ for 38 nearby LIRGs listed in AKARI/FIS-PSC at the velocity of recession between 2,800 km/s and 8,100 km/s. LIRGs are affected by a large amount of dust extinction ($A_V$~ 3 mag), produced by their active star formation activities. Because $Pa{\alpha}$ is the strongest hydrogen recombination line in the infrared wavelength ranges, it is a good and direct tracer of dust-enshrouded star forming regions, and enables us to probe the star formation activities in LIRGs. We find that LIRGs have two star-forming modes. The origin of the two modes probably come from differences between merging stage and/or star-forming process.

Observational Studies of Masers in Star-forming Regions with KVN and KaVA

  • Kim, Kee-Tae;Hirota, Tomoya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.113.2-113.2
    • /
    • 2014
  • Methanol masers are divided into two classes, I and II. Class II methanol masers trace the disk-outflow systems of massive young stellar objects (YSOs), while class I methanol masers appear to trace the interaction regions of outflows with the ambient molecular gas. Class II masers have been extensively studied by single dishes, connected arrays, and VLBIs. Meanwhile, class I masers have been much less studied. They have not been detected by any VLBI facility. Thus they have been believed to have more extended structures than class II masers. We made fringe surveys of 44GHz class I methanol maser emission towards more than 150 massive YSOs with flux densities >10 Jy using the Korean VLBI Network (KVN), and detected fringes in ~10% of the sources. We performed follow-up imaging observations of the detected maser sources with KVN and KVN+VERA (KaVA). The observations aim to investigate the distribution and kinematics of 44GHz methanol maser features in each source at milli-arcsecond resolutions, and to understand what they trace. In this talk we will present the fringe survey and imaging results and our plans for further studies. Additionally, we will also introduce the preliminary results of single-dish polarization observations of water and class I methanol masers.

  • PDF