Acknowledgement
This work was supported by the Korea Astronomy and Space Science Institute through the project of "Development of 30 km Long-range Free-space Quantum Key Distribution System and Core-technologies for Satellite Quantum Secure Communication" funded by the Ministry of Science and ICT (MSIT) of the Korean government.
References
- Kessler DJ, Cour-Palais BG, Collision frequency of artificial satellites: the creation of a debris belt, J. Geophys. Res. 83, 2637-2646 (1978). https://doi.org/10.1029/JA083iA06p02637
- Bennett JC, Sang J, Smith CH, Zhang K, Accurate orbit predictions for debris orbit manoeuvre using ground-based lasers, Adv. Space Res. 52, 1876-1887 (2013). https://doi.org/10.1016/j.asr.2013.08.029
- Sang J, Bennett JC, Achievable debris orbit prediction accuracy using laser ranging data from a single station, Adv. Space Res. 54, 119-124 (2014). https://doi.org/10.1016/j.asr.2014.03.012
- Sang J, Bennett JC, Smith C, Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo, Acta Astronaut. 102, 258-268 (2014). https://doi.org/10.1016/j.actaastro.2014.06.012
- Bennet F, D'Orgeville C, Price I, Rigaut F, Adaptive optics for satellite imaging and space debris ranging, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii, HI, 15-18 Sep 2015.
- Zhang ZP, Yang FM, Zhang HF, Wu ZB, Chen JP, et al., The use of laser ranging to measure space debris, Res. Astron. Astrophys. 12, 212-218 (2012). https://doi.org/10.1088/1674-4527/12/2/009
- Kirchner G, Koidl F, Friederich F, Buske I, Volker U, et al., Laser measurements to space debris from Graz SLR station, Adv. Space Res. 51, 21-24 (2013). https://doi.org/10.1016/j.asr.2012.08.009
- Sun H, Zhang HF, Zhang ZP, Wu B, Experiment on diffuse reflection laser ranging to space debris and data analysis, Res. Astron. Astrophys. 15, 909-917 (2015). https://doi.org/10.1088/1674-4527/15/6/013
- Fruh C, Kelecy TM, Jah MK, Coupled orbit-attitude dynamics of high area-to-mass ratio (HAMR) objects: influence of solar radiation pressure, Earth's shadow and the visibility in light curves, Celest. Mech. Dyn. Astron. 117, 385-404 (2013). https://doi.org/10.1007/s10569-013-9516-5
- Mason J, Stupl J, Marshall W, Levit C, Orbital debris-debris collision avoidance, Adv. Space Res. 48, 1643-1655 (2011). https://doi.org/10.1016/j.asr.2011.08.005
- Rubenchik AM, Fedoruk MP, Turitsyn SK, The effect of self-focusing on laser space-debris cleaning, Light Sci. Appl. 3, e159 (2014). https://doi.org/10.1038/lsa.2014.40
- Bennett JC, Sang J, Smith C, Zhang K, An analysis of very short-arc orbit determination for low-Earth objects using sparse optical and laser tracking data, Adv. Space Res. 55, 617-629 (2015). https://doi.org/10.1016/j.asr.2014.10.020
- Bennet F, Price I, Rigaut F, Copeland M, Satellite imaging with adaptive optics on a 1 m telescope, in Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii, HI, 20-23 Sep 2016.
- Copeland M, Bennet F, Zovaro A, Riguat F, Piatrou P, et al., Adaptive optics for satellite and debris imaging in LEO and GEO, in Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii, HI, 20-23 Sep 2016.
- Grosse D, Bennet F, Copeland M, d'Orgeville C, Rigaut F, et al., Adaptive optics for satellite imaging and earth based space debris manoeuvres, in 7th European Conference on Space Debris, Darmstadt, Germany, 18-21 Apr 2017.
- Lim HC, Sung KP, Yu SY, Choi M, Park E, et al., Satellite laser ranging system at Geochang station, J. Astron. Space Sci. 35, 253-261 (2018). https://doi.org/10.5140/JASS.2018.35.4.253