• Title/Summary/Keyword: standard thermometer

Search Result 27, Processing Time 0.025 seconds

Investigation of Standard Error Range of Non-Contact Thermometer by Environment (외부 환경 변화에 의한 비 접촉 체온계의 오차 범위 측정)

  • Kim, Jeongeun;Park, Sangwoong;Choi, Heakyung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.307-321
    • /
    • 2020
  • Purpose : A person infected by SARS-CoV2 may present various symptoms such as fever, pain in lower respiratory tract, and pneumonia. Measuring body temperature is a simple method to screen patients. However, changes in the surrounding environment may cause errors in infrared measurement. Hence, a non-contact thermometer controls this error by setting a correction value, but it is difficult to correct it for all environments. Therefore, we investigate device error values according to changes in the surrounding environment (temperature and humidity) and propose guidelines for reliable patient detection. Methods : For this study, the temperature was measured using three types of non-contact thermometers. For accurate temperature measurement, we used a water bath kept at a constant temperature. During temperature measurement, we ensured that the temperature and humidity were maintained using a thermo-hygrometer. The conditions of the surrounding environment were changed by an air conditioner, humidifier, warmer, and dehumidifier. Results : The temperature of the water bath was measured using a non-contact thermometer kept at various distances ranging from 3~10 cm. The value measured by the non-contact thermometer was then verified using a mercury thermometer, and the difference between the measured temperatures was compared. It was observed that at normal surrounding temperature (24 ℃), there was no difference between the values when the non-contact thermometer was kept at 3 cm. However, as the distance of the non-contact thermometer was increased from the water bath, the recorded temperature was significantly different compared with that of mercury thermometer. Moreover, temperature measurements were conducted at different surrounding temperatures and the results obtained significantly varied from when the thermometer was kept at 3 cm. Additionally, it was observed that the effect on temperature decreases with an increase in humidity Conclusion : In conclusion, non-contact thermometers are lower in lower temperature and dry weather in winter.

Evaluation of Uncertainty Sources in Temperature Measurement Using Platinum Resistance Thermometer Caused by Temperature Gradient in Furnace and Sealed-type Freezing Point Cells (전기로 및 봉입형 응고점 셀 내의 온도구배가 미치는 표준백금저항온도계 온도측정의 불확도 요소 평가)

  • Kang, Kee-Hoon;Gam, Kee-Sool;Kim, Yong-Gyoo;Song, Chang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.411-416
    • /
    • 2004
  • In the international temperature scale of 1990 (ITS-90), standard platinum resistance thermometer (SPRT) is a defining standard thermometer used in the temperature range from 13.8033 K to $961^{\circ}C$. Uncertainty of SPRT is about several mK and uncertainty of defining fixed points of the ITS-90 which is used for calibrating SPRT is about several tenth of mK. Above $0^{\circ}C$. the defining fixed points are gallium melting point and indium, tin, zinc, aluminium and silver freezing points which are all realized using an electric furnace or a liquid bath. To realize freezing point of tin ($231.928^{\circ}C$) and zinc ($419.527^{\cir}C$), two 3-zone furnaces which have 3 electric heaters were manufactured. Temperature gradient of the constructed furnaces were tested. Uncertainty caused by temperature gradient of furnace and immersion effect of SPRT in the sealed-type freezing point cells were evaluated 0.038 mK for tin freezing point and 0.036 mK for zinc freezing point.

Research of Developing of Standards for Electronic Thermometers (전자식체온계 기준규격 개발 연구)

  • Kim, E.J.;Lee, M.J.;Lee, B.Y.;Park, K.G.;Kim, D.S.;Lee, I.S.;Park, H.D.;Jeong, H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • The thermometers is widely used in diagnostic medical devices, and the safety and accurate performance of these devices are important in the diagnosis and monitoring of personal health. Especially, the accuracy of infra-red thermometer is highly emphasized. Here two typical thermometers are utilized for this purpose: the electronic thermometers measure body temperature by contacting to subject while infra-red thermometers measure by no contacting to subject. Therefore, the evaluating items of each thermometer are different, and the standard for each temperature is highly needed. But, there have been no international standards of each thermometer such as IEC. In this paper, we developed the standards of electronic and infra-red thermometer based on national standards such as KS, ASTM, EN, JIS and FDA guidance. The new standards focused on the safety and suitable performance for health care. This standards were applied to enact and revise the electronic medical device standards. So it can be applied to evaluate the safety and performance on technical file review. We predict that this standard will improve the quality of diagnostic medical devices (thermometers) and increase the international competitive power of domestic product.

Research Study on Seoul Region School Nutritionists' Perception of Potentially Hazardous Foods and Execution Conditions of Managing CCP Control Standard of the HACCP System - Focusing on CCP 3~CCP 7 - (서울지역 학교 영양(교)사의 PHF에 대한 인식 및 CCP 관리기준 수행실태 조사 - HACCP 시스템 CCP 3~CCP 7을 중심으로 -)

  • Lee, Ae-Rang
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.6
    • /
    • pp.517-530
    • /
    • 2016
  • This research was conducted on Seoul region elementary, middle, and high school nutritionists to analyze execution conditions of HACCP control standards, focusing on PHF and CCP 3~CCP 7, in order to determine more efficient methods for school meals' sanitation system settlement. All surveys were distributed and collected via email. A total of 305 survey papers were collected, and 300 school results were analyzed. The following percentage of nutritionists perceived the following foods as potentially hazardous foods(PHF): raw or cooked animal foods (94.7%), blossomed seed products (93.7%), packed pickled radish (36.7%), unopened mayonnaise (30.2%), and unopened snails & corn cans 54.8%. Exactly 51.2% of nutritionists believed that foods were properly supplied via CCP 3's food quality standard. Exactly 33.9% of nutritionists answered that they had never corrected the digital thermometer since there were no issues with the CCP 4's digital thermometer correction frequency level. As for CCP 5's chroline disinfection of green vegetables, 57.1% of nutritionists answered that vegetables were slightly softened while 36.2% said there were no changes at all. According to the nutritionists, the most difficult execution level of CCP levels (excluding CCP 3, CCP 4) was CCP 7 (37.1%), CCP 6 (16.4%), and CCP 2 (16.4%). For the above results, proper training/education must be enforced so that nutritionists can have a clear notion of the PHF. A solution must be developed enhancing the execution of CCP 4's digital thermometer correction frequency level. For CP 5's chroline disinfection of green vegetables, food characteristics must be considered to suggest an appropriate number and method of cleansing. Furthermore, cooking employees are needed that properly use and manage cooling & heating equipments to maintain heated foods above $57^{\circ}C$ under the CCP 7 standard.

Size-of-source Effect and Self-radiation Effect of an Infrared Radiation Thermometer (적외선 복사온도계의 복사원 크기효과 및 자기복사효과)

  • Yoo, Yong-Shim;Kim, Bong-Hwak;Park, Chul-Woung;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.133-138
    • /
    • 2010
  • All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.

Calibration by Comparison and Uncertainty Assessment of Industrial Thermometers at the Boiling Point of Nitrogen (질소의 끓는점에서의 산업용 온도계 비교 교정과 불확도 평가)

  • Yang, Inseok;Gam, Kee Sool;Joung, Wukchul;Kim, Yong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.404-409
    • /
    • 2013
  • We devised calibration procedure for industrial thermometers by a comparison method at the boiling point of nitrogen (${\sim}-196^{\circ}C$). The uncertainty of the calibration was 4 mK (k = 2). As experimentally demonstrated in this work, the effect of the atmospheric pressure on the boiling point of nitrogen can be easily detected by the thermometer. Therefore, when the boiling point of nitrogen is used for calibration of thermometer by comparison, either a reference thermometer must be used to provide the reference temperature or the effect of atmospheric pressure should be carefully considered. The use of a copper block with a large thermal mass soaked into the liquid nitrogen was proven to be more reliable, and the stability of the temperature immersed into the copper block was 1.4 mK. The temperatures at the thermometer wells, evaluated by the crossed-measurement method to compensate for the inaccuracy of the thermometers and the linear drift of the temperature of the copper block, were equivalent within 0.23 mK of standard uncertainty.

Experimental method and evaluation of the calibration capability for the national calibration centers using the platinum resistance temperature sensors (백금저항온도센서를 이용한 국가교정기관의 교정능력 평가 및 실험방법)

  • Gam, Kee-Sool;Yoo, Sung-Ho;Kim, Sung-Min;Lee, In-Sick
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.231-236
    • /
    • 2005
  • Calibration capability was evaluated using the reference-grade platinum resistance thermometer (PRT) in the temperature range of $-50^{\circ}C$ to $250^{\circ}C$ for the national calibration centers. The reference-grade PRT was calibrated at the several fixed points, which was composed by the freezing points of Sn, In, the melting point of Ga and the triple point of water and Hg, before and after the round-robin test (RRT) experiments. The temperature scale of reference-grade PRT was compared to the local standard PRT's using the system of the national calibration centers. $E_{n}$ values was calculated by the temperature difference between the reference-grade PRT and the local standard PRT, and the best measurement capability. Finally, the capability of the national calibration centers was evaluated by the $E_{n}$ values.

Inter-comparison of temperature measurement capability using standard platinum resistance thermometers (표준백금저항온도계를 이용한 온도측정능력 상호비교)

  • Gam, K.S.;Kang, C.S.;Lee, Y.J.;Lee, K.B.;Kim, Y.G.;Park, S.N.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.86-94
    • /
    • 2009
  • Temperature measurement capability was inter-compared using the transfer standard platinum resistance thermometers(SPRT) among four laboratories of KRISS. The transfer SPRTs were primarily calibrated at the triple point of water and Ga melting point, then used at inter-comparison experiment. Temperature difference of calibration value between temperature laboratory and length laboratory at $20^{\circ}C$ was -0.7 mK and +2.4 mK at density laboratory. Temperature measured near $20^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$ at fluid flow laboratory was deviated by $34.2{\sim}80.4\;mK$ from the calibration values of the transfer SPRT. Ga melting points was inter-compared among three laboratories, and the difference of Ga melting points against the standard Ga melting point of temperature laboratory were $0.03{\sim}0.54\;mK$ at length laboratory and 0.02 mK at density laboratory.

Establishment of Comparison Calibration Equipment for Infrared-radiation Thermometers Below ℃ (℃ 이하 적외선 복사온도계 비교 교정장치 구축)

  • Yoo, Yong Shim;Kim, Bong-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Comparison calibration equipment for infrared-radiation thermometers below $0^{\circ}C$ has been established, using a TRT2 (transfer radiation thermometer 2, HEITRONICS) as a transfer standard and an ME30 (Model: ME30, HEITRONICS) as a variabletemperature blackbody. The TRT2 was calibrated using three fixed points (Ice ($0.01^{\circ}C$), In ($156.5985^{\circ}C$), and Sn ($231.928^{\circ}C$)) and the Planckian Sakuma-Hattori equation, and including the interpolation and extrapolation errors at $-50^{\circ}C$ in the uncertainty. The pneumatic lid is installed upon opening of the ME30 and is opened for only 30 seconds for measuring the radiation temperature, which prevents formation of ice in the ME30 and also reduces the calibration time to half. The farther away from the $0{\sim}232^{\circ}C$ region, the larger the uncertainty of the comparison calibration equipment becomes. The expanded uncertainty of the comparison calibration equipment was estimated as 0.26 K at $-20^{\circ}C$.