• Title/Summary/Keyword: stand density management

Search Result 61, Processing Time 0.039 seconds

Estimating Tree Shape Ratio by Region for Pinus Densiflora and Larix Kaempferi in Korea (우리나라 소나무 및 일본잎갈나무의 지역별 형상비 추정)

  • Kang, Jin-Taek;Ko, Chi-Ung;Yim, Jong-Su;Lee, Sun-Jeoung;Moon, Ga-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.600-609
    • /
    • 2019
  • This study was conducted to highlight the necessity for a stand density control management plan in consideration of the shape ratio of Pinus densiflora and Larix kaempferi in Korea. A total of 2,112 Pinus densiflora samples and 2,030 Larix kaempferi samples were cut, and their diameter at breast height (DBH), height, and clear length were measured for regional shape ratio (height/DBH) comparison and analysis.The shape ratio of Pinus densiflora was 72.3% in the Gangwon district, 64.0% in the central district, and 70.8% on average, indicating a higher percentage of Pinus densiflora in Gangwon than in the central area. Regionally, Yeongju had the highest percentage at 78.4%, with Yeongwol indicating 77.5%. Measured by diameter, results showed a presence of 90.4% for small diameter trees (6-16 cm), 71.7% for medium diameter trees (18-28 cm), and 56.1% for large diameter trees (30 cm). As density increased, the shape ratio of height to tree trunk diameter also increased; below 70% indicated a more stable trunk, while a result above 80% indicated trunks prone to wind hazards and snowstorms, and, therefore, the need for density control in partial areas. The overall shape ratio of Larix kaempferi was 90.6%. Pyeongchang indicated a 108.5% ratio, Yeongju 105.4%, and Danyang 100.5%, respectively.According to diameter class, small diameter trees showed 104.9% occurrence, medium diameter trees 92.7%, and large diameter trees 73.4%. The shape ratio of Larix kaempferi was higher than 80% overall, indicating vulnerability to wind hazards and snowstorms. Therefore, appropriate stand density management is required.

Visual Preference Evaluation of Forest Stands toward Forest Working Systems (산림작업에 따른 임분의 시각선호도 평가)

  • Song, Hyung Sop;Oh, Do Kyo
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.139-147
    • /
    • 2003
  • The main purpose of this study is to obtain forest scenic beauty management informations toward forest working systems in pinus densiflora forest stands, etc. To get these information, visual preference and spatial image analysis methods are used. 25 different alternatives were simulated to visualize on basis of actual forest working methods with taken photos from May to July, 2003. The options were illustrated as photos produced by computer software. Respondents' ratings for 25 landscape scenes were obtained by interview survey method. Each alternatives were evaluated by forest major student group with total 103 respondents after reliability test. Visual preference evaluation was used 10 point rating scale. Spatial images of 12 alternatives were measured by 12 semantic differential scale. In general, the respondents preferred refreshing and ordering forest stand after forest working to natural forest stand before forest working. High visual preference for forest density produces 400-600 trees/ha in small diameter class forest stands. Regarding visual preference according to pavement type of trail, soil trail is ranked high. Visual preference for cutting area ranks mature forest stand and visual preference for trail slope cover type ranks shrub with grass as relatively high on the preference scale. Through the factor analysis, spatial images of 12 coniferous forest stands are classified as 'ordered opened' and 'beautiful healthy'. Results indicate how to conduct forest working systems for forest scenic beauty management.

  • PDF

Bootstrap Evaluation of Stem Density and Biomass Expansion Factors in Pinus rigida Stands in Korea (부트스트랩 시뮬레이션을 이용한 리기다소나무림의 줄기밀도와 바이오매스 확장계수 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Son;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.535-539
    • /
    • 2011
  • This study was conducted to examine the bootstrap evaluation of the stem density and biomass expansion factor for Pinus rigida plantations in Korea. The stem density ($g/cm^3$) in less than 20 tree years were 0.460 while more than 21 tree years were 0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 2.013, 1.171, respectively. The results of 100 and 500 bootstrap iterations, stem density ($g/cm^3$) in less than 20 years were 0.456~0.462 while more than 21 years were 0.457~0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 1.990~2.039, 1.173~1.170, respectively. The mean differences between observed biomass factor and average parameter estimates showed within 5 percent differences. The split datasets of younger stands and old stands were compared to the results of bootstrap simulations. The stem density in less than 20 years of mean difference were 0.441~1.049% while more than 21years were 0.123~0.206% respectively. Biomass expansion factor in less than 20 years and more than 21 years were -1.102~1.340%, -0.024~0.215% respectively. Younger stand had relatively higher errors compared to the old stand. The results of stem density and biomass expansion factor using the bootstrap simulation method indicated approximately 1.1% and 1.4%, respectively.

Allometric Equations of Crown Fuel Biomass and Analysis of Crown Bulk Density for Pinus densiflora (소나무 수관 부위별 연료량 추정식 개발 및 수관연료밀도 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Kim, Seon-Young;Yoon, Suk-Hee;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • To analyze the characteristics of canopy fuel in Pinus densiflora stand, which is essential to assess the crown fire hazard, allometric equations for estimation of crown fuel biomass were developed by subjectively categorized crown fuel component and crown bulk density was analyzed by available fuel component categories. Ten trees were destructively sampled at Pinus densiflora stand in Mt. Palgong in Daegu and their crown fuels were weighed separately for each fuel category by size classes and by living and dead. Regression equations that estimate crown fuel load by diameter at breast height(D) or additional total height(H) were derived. The adjusted coefficient of determination values were the highest (${R^2}_{adj}$=0.835-0.996) and standard error of estimate were the lowest (SEE=0.074-0.638) in the allometric equation lnWt=${\alpha}+{\beta}lnD+{\gamma}lnH$ in average. However, in needles and small branches categories, the differences in ${R^2}_{adj}$ and SEE between equations were not significant. Crown bulk density (CBD), which was calculated by crown fuel load divided by crown volume, was 0.067 kg/$m^3$ in average when only needles were considered as available crown fuel and 0.097 kg/$m^3$ when needles and branches (0-0.5 cm diameter) were considered. The increments of CBD of needles and small branches were little even when diameter at breast height increased.

Visual Preference Evaluation on Forest Working Systems' Characteristics for Forest Scenic Beauty Management (산림풍치자원관리(山林風致資源管理)를 위한 산림시업특성별(山林施業特性別) 시각선호도(視覺選好度) 평가(評價))

  • Song, Hyung Sop
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.309-319
    • /
    • 1999
  • This study was conducted to get forest scenic beauty management information toward forest working systems; characteristics in Larix forest stands. 35 different alternatives were simulated to visualize on basis of actual forest working methods. The options were illustrated as photos produced by computer software. Each alternatives were evaluated by 3 groups with total 593 respondents after reliability test. Visual preference evaluation was used 1 - 10 point rating scale. The ratings were scaled using SBE analysis program of RMRATE. To compare the relationship of visual preference and image scale, Spatial images of 13 thinning alternatives were measured by Semantic differential scale. In general, the respondents preferred refreshing and ordering forest stand after forest working to natural forest stand before forest working. Visual preference decreased with the increasing intensity of bare ground area and slash area in forest stand. And also, visual preference was high related to tree density, clear length of stem, and ground vegetation. Farm line of small clear cutting area was preferred straight line to curve line. Visual preferences were significant differences in certain socioeconomic variables of the respondents. Results indicate how to conduct forest working system for forest scenic beauty management.

  • PDF

Differences in Population Density of 3 Rodent Species Between Natural Restored and Red Pine Silvicultured Forests after Forest fire (산불피해 후 자연복원과 소나무 조림을 실시한 지역에서 설치류 3종의 개체군 밀도 차이)

  • Lee, Eun-Jae;Son, Seung-Hun;Lee, Woo-Shin;Eo, Soo-Hyung;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.553-558
    • /
    • 2010
  • This study was conducted to clarify the differences in rodents population densities between natural restored and red pine silvicultured forests after forest fire in Samcheok, Gangwon Province, Korea from March to December 2008. One ha size of 3 study plots were set up in each natural restored and silvicultured stand. We trapped the small rodents during 4 consecutive nights every 2 months in each stand. Understory coverage and number of shrub stems were higher in silvicultured stand than in natural restored stand. Coverage of overstory, suboverstory and midstory, number of tree stem, woody seedling stems and dead wood, and amount of coarse woody debris were higher in natural restored stand than in silvicultured stand. Six hundred eighty eight individuals of four species, such as Apodemus agrarius, A. peninsulae, Eothenomys regulus and Tamias sibiricus were captured in our study. Number of captured small rodents were higher in natural restored stand than in silvicultured stand. Also, species compositions were differed in both stands. The captured number of A. agrarius and A. peninsulae were most highest in April and December. E. regulus were shown higher number of captured in April and June, and T. sibiricus were in June and October. Removal of coarse woody debris and silvicultural practice would not be good for the inhabitation of small rodents. For the conservation of small rodents diversity, management of understory and canopy would be needed in forest fired area.

Classification of Quercus mongolica Stand Types at Mt. Joongwang, Kangwon-Do and Determination of Proper Future Tree Density for Forest Tending Work (중왕산(中旺山) 지역(地域) 신갈나무림(林)의 임분형(林分形) 구분(區分) 및 육림작업(育林作業)에 적절(適切)한 미래목(未來木) 본수(本數)의 결정(決定))

  • Choi, Seon Deok;Lee, Don Koo;Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.631-641
    • /
    • 1998
  • The objectives of this study were 1) to classify the types of Quercus mongolica stands at Mt. Joongwang and compare their quality, and 2) to determine the proper future tree number of Q. mongolica per ha and the appropriate distance between the future trees. The results from this study were as follows : Q. mongolica stands at Mt. Joongwang was classified into four types, pure Q. mongolica stand as stand type I, Q. mongolica - hardwood stand as stand type II, Q. mongolica - Pines densiflora stand as stand type III, Hardwood - Q. mongolica stand as stand type IV, according to mixture rate in stand volume. Stand type IV showed the best quality stem of Q. mongolica among the stand types, and the stem quality of Q. mongolica in Q. mongolica stand mixed with hardwood as stand types II and IV was better than those in pure Q. mongolica stand as stand type I and in Q. mongolica - P. densiflora stand as stand type III. If the management goal for Q. mongolica stand is to produce its high quality-timber, it is desirable to sustain proper mixture rate of Q. mongolica with another hardwoods. The proper number of future trees in pure Q. mongolica stand as stand type I was 122trees/ha and reasonable distance between the future trees was 9.15m. The distance between future trees in other stand types was 7.2m to 9.3m for stand types II and IV, while 8.0m for stand type III. Thus, the classification of Q. mongolica stand type based on stand character and maturity, and proper stem number of future tree and optimum distance between future trees would be a useful forest tending work.

  • PDF

Carbon Storage of Natural Pine and Oak Pure and Mixed Forests in Hoengseong, Kangwon (횡성지역 천연 소나무와 참나무류 순림 및 혼효임분의 탄소 저장량 추정)

  • Lee, Sue Kyoung;Son, Yowhan;Noh, Nam Jin;Heo, Su Jin;Yoon, Tae Kyung;Lee, Ah Reum;Sarah, Abdul Razak;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.772-779
    • /
    • 2009
  • This study was conducted to estimate the carbon (C) contents in pure and mixed stands of pine (Pinus densiflora) and oak (Quercus spp.) trees for establishing the C inventory of forest ecosystems. A total of fifteen 20 m${\times}$20 m pure and mixed stands of pine and oak trees were chosen in natural forests in Hoengseong, Kangwon based on the basal area of all trees ${\geq}$ 5 cm DBH: three of 95% of pine and 5% oak trees [pine stand], three of 100% of oak trees [oak stand], and nine of 20 to 70% of pine and 80 to 30% of oak trees [mixed stand]. To estimate C contents in the study stands, biomass in vegetation, forest floor and coarse woody debris (CWD) were calculated and C concentrations in vegetation, forest floor, CWD and soil (0-30 cm) were analyzed. There was no significant difference in vegetation C contents among the stands; 147.6 Mg C/ha for the oak stand, 141.4 Mg C/ha for the pine stand and 115.8 Mg C/ha for the mixed stand. Forest floor C contents were significantly different among the stands (p<0.05); 12.7 Mg/ha for the pine stand, 9.9 Mg/ha for the oak stand, and 8.4 Mg/ha for the mixed stand. However, CWD C contents were not significantly different among the stands (p>0.05); 2.2 Mg/ha for the mixed stand, 1.7 Mg/ha for the oak stand, and 1.1 Mg/ha for the pine stand. Soil C contents up to 30 cm depth were not significantly different among the study stands; 44.4 Mg C/ha for the pine stand, 41.6 Mg C/ha for the mixed stand, and 33.3 Mg C/ha for the oak stand. Total ecosystem C contents were lower in the mixed stand than those in the pure stands, because vegetation C contents which occupied almost total ecosystem C contents were lower in the mixed stand than those in the pure stands; 199.6 Mg C/ha for the pine stand, 192.5 Mg C/ha for the oak stand and 169.1 Mg C/ha for the mixed stand. Lower vegetation C contents in the mixed stand might be influenced by interspecific competition between pine and oak trees and intraspecific competition among the oak trees resulted from high stand density. We suggest that forest management such as thinning to enhance C storage is indispensible for minimizing the competition in forest ecosystems.

A Study on the Production Structure and Biomass Productivity of Quercus variabilis Natural Forest (굴참나무천연림(天然林)의 생산구조(生産構造) 및 물질생산력(物質生産力)에 관(關)한 연구(硏究))

  • Kim, Si Kyung;Jeong, Jwa Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.91-102
    • /
    • 1985
  • Growth and biomass production of natural stands of Quercus variabilis in relation to tree density were studied to obtain basic guide lines for future tending operation. Two natural stands of Quercus variabilis located at 900m (A stand: 6,600trees/ha, $15.84m^2/ha$, $\frac{19}{17-20}$) and 800m (B stand: 4,300trees/ha, $16.65m^2/ha$, $\frac{20}{17-21}$) elevation in Sancheong, Kyongnam Province were selected for the comparative study and following results were obtained through a sample plot method. After diameter of individual trees in the sample plots was measured, twelve average trees from each diameter class were cut felled to measure dry weight of $W_S$, $W_B$, $W_L$, $W_{Ba}$, and standing biomass and biomass production rates by a allometrior regressions related to $D^2H$. Vertical distribution of leaves along the stems indicated that photosynthesis was carried out 2.2m above the ground in Stand A and 1.2m in Stand B. Maximum photosynthesis was located 4.2m and 6.2m above the ground in Stand A and B, respectively. Leaf area index was 4.25ha/ha for Stand A, and 3.89ha/ha for Stand B. Above-ground standing biomass was 49.51 ton/ha for Stand A and 59.20 ton/ha and net annual production was 6.75 ton/ha/yr. for Stand A and 8.99 ton/ha/yr. for Stand B. The ratio of net annual production to standing biomass was 17.5% for Stand A and 16.7% for Stand B. Net assimilation rate was 2.75kg/kg/yr. for Stand A and 3.58kg/kg/yr. for Stand B. Stem wood production rate was 1.46kg/kg/yr. for Stand A and 2.09kg/kg/yr. for Stand B. Bark production rate was 0.60 kg/kg/yr. for Stand A and 0.34kg/kg/yr. for Stand B. Above data indicated that Stand B utilized growing spaces and sites more efficiently than Stand A. It is concluded chat productivity of natural stands of Quercus variabilis can be enhanced through optimization of basal areas and number of tree per hectare and that sound management of natural oak stands should be based on systematic sampling of the area for periodic productivity estimation.

  • PDF

Estimation of Canopy Fuel Characteristics for Pinus densiflora Stands Using Diameter Distribution Models: Forest Managed Stands and Unmanaged Stands (직경분포모형을 이용한 소나무림의 수관연료특성 예측: 산림시업지 임분과 비시업지 임분에서)

  • Lee, Sun Joo;Kim, Sung Yong;Lee, Byung Doo;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.412-421
    • /
    • 2018
  • The objective of this study was to analyze the effects of forest management activities on canopy fuel characteristics for Pinus densiflora stands in South Korea. We used 1,085 managed stands data and 349 unmanaged stands data of the National Forest Inventory for this study, and it was estimated by using the Weibull function for the growth of stand and canopy fuel characteristics. Comparing the canopy fuel characteristics for the managed stands and unmanaged stands shows that the average canopy fuel load is about 14% higher than that of managed stands, and the canopy bulk density is also approximately 16% higher. The results of comparing growth projections for 40 years, 50 years and 60 years with the Weibull function are as follows: Over time, managed stands was predicted the maximum number of medium and large class diameter, while unmanaged stands was predicted maximum number of small and medium class diameter. From a fire fuel perspective, unmanaged stands are predicted to be of the type small class diameter and high density, which is a good condition for crown fire. In addition, Canopy fuel load, Canopy bulk density is relatively higher than managed stands, indicating that the possibility of high crown fire hazard.