• Title/Summary/Keyword: stand density management

Search Result 61, Processing Time 0.027 seconds

Optimum Stand Density Control Considering Stability in Larix kaempferi Forests (임분 안정성을 고려한 일본잎갈나무 임분밀도 관리의 적정 수준)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • This study investigated the optimal levels of stand density control considering the stability of Larix kaempferi stands. A stand density management diagram was developed from 259 sample plots. Based on these data, we determined an optimal level of the stand density control by identifying the relationship between the relative yield index (Ry) and height-to-diameter ratio. The estimated r-square (R2) of the stand density management diagram is 0.600. The analysis of the relationship between Ry and the slender tree incidence showed that when the stand density exceeded a certain threshold and the ratio of slender trees rapidly increased. The critical value of Ry was 0.63. The results of this study are expected to contribute to the establishment of stand management strategies that can reduce damage from natural causes, such as wind and snow, and to develop stand practice systems for the improved productivity of commercial forests.

Development of a Stand Density Management Diagram for Teak Forests in Southern India

  • Tewari, Vindhya Prasad;Alvarez-Gonz, Juan Gabriel
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.259-266
    • /
    • 2014
  • Stand Density Diagrams (SDD) are average stand-level models which graphically illustrate the relationship between yield, density and mortality throughout the various stages of forest development. These are useful tools for designing, displaying and evaluating alternative density regimes in even-aged forest ecosystems to achieve a desired future condition. This contribution presents an example of a SDD that has been constructed for teak forests of Karnataka in southern India. The relationship between stand density, dominant height, quadratic mean diameter, relative spacing and stand volume is represented in one graph. The relative spacing index was used to characterize the population density. Two equations were fitted simultaneously to the data collected from 27 sample plots measured annually for three years: one relates quadratic mean diameter with stand density and dominant height while the other relates total stand volume with quadratic mean diameter, stand density and dominant height.

Prediction of Mortality and Yield for Chamaecyparis obtusa Using Stand Density Management Diagram (임분밀도관리도를 이용한 편백림의 고사량 및 수확량 예측)

  • Park, Joon Hyung;Yoo, Byung Oh;Lee, Kwang Soo;Park, Yong Bae;Kim, Hyung-Ho;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.174-183
    • /
    • 2018
  • This study aims to make the stand density management diagram which is useful for establishing stand density management system in Chamaecyparis obtusa forest. By using 216 sample plots to estimate Yield-Density relationship ($R^2=0.743$), the stand density management diagram was modeled by the estimated parameters. As a result of this diagram, after planting 3,000 trees per hectare the mortality rate of this unthinned C. obtusa stands over 80 years was estimated to be equal to $12.0{\sim}18.1trees{\cdot}ha^{-1}{\cdot}year^{-1}$, and stand volume was $463.1{\sim}695.4m^3{\cdot}ha^{-1}$, and stand density was $1,555{\sim}2,038trees{\cdot}ha^{-1}$. Developed stand density management diagram for C. obtusa is effective to establish the management criteria and production objective. Therefore, this study allowed us to make the optimal forest working plan.

Development and Validation of the Stand Density Management Diagram for Pinus densiflora Forests in Korea (소나무 임분밀도관리도 작성 및 실용성 검정)

  • Park, Joon Hyung;Lee, Kwang Soo;Yoo, Byung Oh;Park, Yong Bae;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.342-350
    • /
    • 2016
  • This study aims to make the stand density management diagram which is very useful for establishing systematic management plan and obtaining management goal in Pinus densiflora forest. To estimate 5 models mainly composed of stand density management diagram, we used total of 1,886 sample plots having more than 75% of the total basal area of the pine trees in each stand. To test the goodness of fit, $X^2$ was computed with a significance level of 5%, and the acceptable error range as 20%. Also standard deviation of the model was $34.59m^3{\cdot}ha^{-1}$, minimum acceptable error range was 16.59% and coefficient of variation was 22.11%. If we use the stand density management diagram, it would be useful to establish the timber yield and thinning plan understanding the pathway of stand density management.

The Production Objectives and Optimal Standard of Density Control Using Stand Density Management Diagram for Pinus densiflora Forests in Korea (임분밀도관리도를 이용한 소나무림의 적정 임분밀도 관리 기준 및 수확목표)

  • Park, Joon-hyung;Jung, Su-Young;Yoo, Byung-oh;Lee, Kwang-Soo;Park, Yong-bae;Kim, Hyung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.457-464
    • /
    • 2017
  • This study has utilized the stand density management diagram to devise an efficient management standard for the stand density for Pinus densiflora that secures the health of the stands and predicted the harvest goals. The appropriate stand control level was estimated by modeling the relationship of the relative yield index (Ry) to the ratio of slender trees within the stand through an exponential function; the coefficient of determination ($R^2$) was found to be 0.424 according to the estimation. The ratio of slender trees within the stand showed a tendency of rapid increase at a certain relative yield index; with this relational function, the appropriate Ry value of 0.84 was obtained. By estimating the curve of the Ry value 0.84, which was the appropriate stand density management level, as well as the height of dominant trees in the central region of Korea, the production objective for each site index was set. Assuming that the final age by the site indices ranged from 10 to 16 for the P. densiflora in central region of Korea, the number of production was estimated to be between 426 to 1,311 trees per ha. It was predicted that the production of medium-diameter logs larger than 30 cm in diameter is possible for the target DBH at a site index of more than 16; small-diameter logs larger than 20 cm in diameter for site indices 12 and 14 enabled, and small-diameter logs of less than 20 cm for site index 10.

The Comparison of Tree Growth by the Residual Stand Density in Artificial Coniferous Forests (침염수 조림지에서의 잔존임분밀도에 따른 임목생장 비교에 관한 연구)

  • 강성기;김완수;이원섭;김지홍
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.46-57
    • /
    • 2001
  • This study was conducted to provide tending operation information for the effective management in unmanaged artificial forests of Pinus densiflora for. erecta, Pinus rigida, and larix leptolepis, based on the study of the comparison of tree growth pattern by residual stand density after thinning practices. Followings are summarized results of this study. 1. The diameter growth of residual trees was increased as residual stand density decreased by thinning practices in the stands of Pinus densiflora for. erecta, and Pinus rigida, and subcompartment (Ga) and (Na) of Larix leptolepis. The statistical analysis noted that the tree growth was significantly different by the residual stand density. 2. The height growth did not show corresponding results by stand density treatment pattern, which indicated that the height growth was not directly influenced by residual stand density, but by site quality of the stand. 3. The diameter increment for the last six years was proportionately increased in larger diameter classes and less dense stands.

  • PDF

Improvement of the Thinning System by Exploring the Stand Density Management Criteria for Chamaecyparis obtusa in South Korea (편백림의 임분밀도 관리 기준 탐색을 통한 시업체계 개선)

  • Su Young Jung;Kwang Soo Lee;Hyun Soo Kim;Joon Hyung Park
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.131-142
    • /
    • 2024
  • The purpose of this study was to estimate the optimal stand density criteria for each growth stage of Chamaecyparis obtusa (Siebold & Zucc.) Endl. to achieve the timber production goal for cypress forests and develop an optimal silvicultural system for forest thinning. A relative yield index (Ry) value of 0.75, presented as a stand density management criterion index, was estimated by analyzing the relationship characteristics between the composition ratio and stand density of slender trees from 216 sample plots of the recruited cypress forests. The analysis of the feasibility of achieving each production target in the existing silvicultural system for C. obtusa revealed that the growth rate according to the parameters of forest land productivity, such as site index and thinning intensity according to the increase in age, was not properly reflected. In the thinning system for each timber production target analyzed in this study, 353 high-quality large hardwoods from 498.1 m3/ha, 703 high-quality medium hardwoods from 376.2 m3/ha, and 1,758 small-diameter hardwoods from 249.5 m3/ha could be harvested. Although the silvicultural system prepared on the basis of the results of this study cannot be uniformly applied according to various management goals, this study is meaningful in that it presents empirical reference standards based on the stand density management diagram that reflects the growth characteristics of cypress forests in South Korea.

Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy (폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가)

  • Mun Ho Jung;Kwan In Park;Ji Hye Kim;Won Hyun Ji
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.

Causes of Weakening Tree Vigor of Pinus thunbergii in Hanbando Coastal Forest in Shinangun, Jeollanamdo Province (전남 신안군 한반도해송숲의 곰솔 수세약화 원인 분석)

  • Kim, Sun-Hwa;Park, Seo-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.398-407
    • /
    • 2021
  • This study intended to identify causes of poor tree vigor in the Hanbando coastal forest by investigating its geographical environment, climate condition, soil physicochemical characteristics, and growth condition of Pinus thunbergii. It divided the forest into an area with poor tree vigor or dead standing trees and a control area with good tree vigor and examined them separately. The survey showed that stand density was significantly higher in the area with poor tree vigor. In contrast, the crown width in the area with good tree vigor was wider. The number of dead standing trees and the stand density showed a negative correlation. The stand density and diameter at breast height (DBH), tree height, crown height, and crown width also showed a negative correlation. The result indicated that, as the tree's stand density increases, the crowns of individual trees overlapped and the lower branches died. Then crown height and crown width decreased, and the number of leaves and photosynthesis was reduced, leading to lower tree height and weaker growth of breast diameter. As a result, tree vigor weakened, and combined with environmental pressures from the lack of moisture and nutrients in coastal soil and salty wind, P. thunbergii in coastal areas is expected to die massively. Although the causes of dead standing trees and poor tree vigor of P. thunbergii in the Hanbando coastal forest are complicated, poor management of adequate tree density in response to the growth of P. thunbergii is the primary cause. The secondary cause is external environmental pressures, including unfavorable soil conditions and salty and strong wind that obstruct the growth of P. thunbergii.

Analysis of the Final Cutting Ages in Quercus variabilis Coppice Forests (굴참나무 맹아갱신지의 벌기령 추정)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Kim, Hyungho;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • we developed a stand density management diagram for Quercus variabilis in order to predict the final cutting ages of coppice forests based on management objectives. The sample data were classified into two groups: 603 data points for analysis and 113 data points for verification. Using these data, a stand density management diagram was constructed and a goodness-of-fit test was performed. The explanatory power (R2) of the constituent models for the stand density management diagram was 0.732 for the equivalent height curve and 0.990 for the equivalent diameter curve. According to the analysis of the final cutting age rangeof the highest production, the final cutting ages for 900 buds remaining per hectare was 42-44 years, and that for the 1,800 buds remaining per hectare was 38-42 years. With the third-grade log set as the production target, the final cutting age range with site index 16 and 14 was 25-28 years and 29-33 years, respectively. The results of this study provide baseline data for establishing a management plan for Q. variabilis coppice stands.