• 제목/요약/키워드: stall control

Search Result 111, Processing Time 0.029 seconds

Review of Stall Inception in Turbocompressors (터보압축기의 스톨 발단에 관한 연구 리뷰)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.58-65
    • /
    • 2003
  • Stall inception means the phenomena of rotating stall initiation. The initiation mechanism of rotating stall, the existence of stall precursor, the behavior of stall precursor, stall warning scheme and control scheme are the main interests in stall inception research. Compared to the studies on rotating stall which has long history, the stall inception has been studied for about recent 20 years. After the first discovery of stall precursor in about 20 years ago, many studies were reported on stall inception phenomena. The inception pattern of 'mode' and 'spike' were found, and some of its characteristics are known. And now the stall inception has become one of the fascinating fields in turbomachinery. The development stall control scheme which apply the reliable stall warning scheme will play a great role in future compressor and aeroengine. This paper reviews the results and analysis methods on stall inception studies.

Numerical Study of Flow Control of Dynamic Stall Using Continuous Blowing/Suction (정적 Blowing/Suction을 이용한 동실속 유동 제어에 관한 수치적 연구)

  • Choi S. Y.;Kwon O. J.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-119
    • /
    • 2004
  • The effect of a continuous blowing or suction on an oscillating 2-D NACA0012 airfoil was investigated numerically for the dynamic stall control. The influence of control parameter variation was also studied in the view point of aerodynamic characteristics. The result showed that the blowing control kept a higher lift drag ratio before stall angle but the dynamic stall angle was not exceed to without control result. As the slot position was closer to leading edge, the positive control effect becomes greater. The stronger jet and the smaller jet angel made more favorable roles on the control performance. In the cases of the suction, the overall control features were similar to those of the blowing, but dynamic stall angle was increased, i.e. suction was more effective to control dynamic stall. It was also founded that the suction control was showed better control effect as the slot position moves to trail edge within thirty percentage of chord length. In the simulation for the jet strength and the jet angle control, the same tendencies were observed to those of blowing cases.

  • PDF

Power Regulation Algorithm for Stall Wind Turbines (스톨 풍력터빈 출력 제어 알고리즘)

  • Donggeun Jeong;Taesu Jeon;Insu Paek
    • Journal of Wind Energy
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • In this paper, a power control algorithm for a 30 kW horizontal-axis lift-type stall control wind turbine was developed. The control algorithm consists of three different control strategies for three different control regions. At a wind speed that is much lower than the rated wind speed, it uses a generator speed, generator torque lookup table to track the maximum power coefficient of the rotor. At a wind speed that is higher than the rated wind speed, multiple closed control loops are used to track the rated power. Also, a closed-loop control between the two control regions is used to maintain the rated speed of the rotor. The proposed control algorithm was validated by dynamic simulations using Bladed. Based on the simulation results, it was found that the proposed algorithm works properly in three control regions of the wind turbine. The proposed control algorithm is expected to increase the capacity factor of stall-regulated small wind turbines.

Dynamic Stall Control with Droop Leading Edge and Gurney Flap (앞전 Droop과 Gurney 플랩을 이용한 동적 실속 제어)

  • Lee, Bo-Sung;Yee, Kwan-Jung;Joo, Wan-Don;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.10-17
    • /
    • 2004
  • To achieve the advanced forward flight performance of helicopter, the passive control methods for enhancement of the dynamic stall characteristics of rotor blades are studied. To enhance the dynamic stall characteristics of the rotor blades, it is essential to improve the lift performance and the pitching moment performance simultaneously with the control of the separation on the rotor blades. For this point of view, both the fixed droop leading edge and the Gurney flap which are simply realized are used for control of the dynamic stall in severe dynamic stall conditions. From this study, the combination of both passive control methods showed dramatic enhancement of lift and pitching moment performance in dynamic stall than previous research results.

Review of Stall Inception in Turbocompressors (터보압축기의 스톨 발단에 관한 연구 리뷰)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.875-880
    • /
    • 2003
  • Stall inception means the phenomena of rotating stall initiation. The initiation mechanism of rotating stall, the existence of stall precursor, the behavior of stall precursor, stall warning scheme and control scheme are the main interests in stall inception research. Compared to the studies on rotating stall which has long history, the stall inception has been studied for about recent 20 years. After the first discovery of stall precursor in about 20 years ago, many studies were reported on stall inception phenomena. The inception pattern of "mode" and "spike" were found, and some of its characteristics are known. And now the stall inception has become one of the fascinating fields in turbomachinery. This paper reviews the results and analysis methods on stall inception studies.

  • PDF

Development of Fan Stall Warning Equipm4ent (송풍기 맥동 감시 장치 개발)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.924-928
    • /
    • 2008
  • In this paper, The fan stall guard system of boiler airing system of the class of 500MW capacity to protect fan. But because confidence is loosed and operation is influenced by frequent fault of fan stall guard system, confidence is improved by substituting DCS Logic for it.

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery (항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

The control of maximum power output for a grid-connected wind turbine system by using pitch control method (피치 제어를 이용한 계통연계 풍력발전 시스템의 최대출력 제어)

  • Ryu, Haeng-Soo;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.159-161
    • /
    • 2001
  • This study is for the pitch control of blade, used in most horizontal-axis wind turbine systems, to sustain the maximum power output supplied to grid. The control of a blade can be divided into a stall regulation and a pitch control methods. The stall regulation method using an aerodynamic stall is simple and cheap, but it suffers from fluctuation of the resulting power. Pitch control method is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation method. In this paper 2.5MW MOD-2 wind turbine system is adopted to be controlled by a pitch controller with PI method. The simulation performed by MA TLAB will show the variation of frequency, generator output, and pitch angle.

  • PDF