• Title/Summary/Keyword: stage-discharge curve

Search Result 80, Processing Time 0.025 seconds

Analysis of Field Observations on Characteristics of Stage-Discharge Relationshiup for Yangsan River (양산천 수위-유량관계 특성에 관한 현장관측 분석)

  • 이용희;이상배
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.107-114
    • /
    • 2000
  • Derivation of stage-discharge relationship and characteristics for Yangsan river is presented in this paper. This research has been conducted as the second one after the first trial in 1997. The determination of discharge at a Yangsan river gauging was best made by measuring the flow velocities with a current meter and rod float. The rating curve obtained through 52 stage-discharge measurements on Yangsan river basin in 1999 is represented by Q=15.3540-140.6076H+182.44372H$^2$, which is discovered to be most excellent among other curves in reliability analysis. The observed stage-discharge data for Yangsan river was tested by HEC-RAS program, and reproduction of discharge by the induced curve was investigated and compared with the computational results. The rating curve of Yangsan river shows characteristics of Yangsan river more accurately compared with those separated in terms of water levels.

  • PDF

A Study on Characteristics of Stage-discharge Relationship for Yangsan River (양산천 수위-유량관계 특성에 관한 연구)

  • 이용희;이상배
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.91-98
    • /
    • 2000
  • Derivation of stage-discharge relationship and characteristics for Yangsan river is presented in this paper. This research has been conducted as the second one after the first trial of 1997. The determination of discharge at a Yangsan river gauging was best made by measuring the flow velocities with a current meter and rod float. The rating curve obtained through 52 stage-discharge measurements on Yangsan river basin in 1999 is represented by Q=15.3540-140.6076H+182.44372$H^2$, which is discovered to be most excellent among other curves in reliability analysis. The capability of the observed stage-discharge data for Yangsan river was tested by HEC-RAS program, and its capability to reproduce discharge was investigated and compared with the computational results. Rating curve stability is determined on the basis of deviations in the stage-discharge relationship, utilization of specific gauge, and absolute differences between sequential stream flow measurements and an analysis residuals. Therefore it seems necessary to research method to obtain rating curve in a rigorous and accurate manner.

  • PDF

A Study on Derivation of Rating Curve for Yangsan River (양산천 수위-유량 관계곡선의 유도에 관한 연구)

  • Lee, Y.H.;Lee, S.B.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.131-143
    • /
    • 1998
  • This paper presents derivation of stage-discharge curve for Yangsan river. To derivate of stage-discharge lationship is one of the essential research areas in the water resource field. It provides reliable data a long term planning and hydrologic quantity on water resource development by quantitative analysis. The rating curve derivated through 15 discharge-observation on Yangsan river basin in 1997 has been estimated Q=1283.0262-1553.3158H+477.2702H2. According to the rating curve, the highest water level 2.6m, the limited water-level should be bound to the maximum of 2.6m. Before this research, stage-discharge curve of Yangsan river has not been developed, and only 15 discharge observation(hydrometry) has been carried out though this research. Therefore it seems necessary to collect observation data through a long term process to obtain a reliable rating curve equation.

  • PDF

Estimation of Discharge Using Mean Velocity Equations (평균유속공식을 활용한 하천 유량 산정)

  • Choo, Tai-Ho;Koh, Deuk-Koo;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.265-273
    • /
    • 2010
  • This study proposed the method that can calculate discharge using hydraulic characteristics that can acquire easily-comparatively such as hydraulic radius, bed slope, depth to improve the stage-discharge curve equation considering only stage. Roughness coefficient n value and C value that hydraulic characteristics of rivers is reflected from Manning's equation and Chezy's equation using the measured data of the natural open channel in the report of Albert University estimated and calculated discharge on the basis of this. The method proposed in this study was calculated stunningly to measured discharge. And that compared with discharge by existent stage-discharge curve.

Improvement of the Method using the Coefficient of Variation for Automatic Multi-segmentation Method of a Rating Curve (수위-유량관계곡선의 자동구간분할을 위한 변동계수 활용기법의 개선)

  • Kim, Yeonsu;Kim, Jeongyup;An, Hyunuk;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.807-816
    • /
    • 2015
  • In general, the water stage-discharge relationship curve is established based on the assumptions of linearity and homoscedasticity. However, the relationship between the water stage and discharge is affected from geomorphological factors, which violates the basic assumptions of the water stage-discharge relationship curve. In order to reduce the error due to the violations, the curve is divided into several sections based on the manager's judgement considering change of cross-sectional shape. In this research, the objective-splitting criteria of the curve is proposed based on the measured data without the subjective decision. First, it is assumed that the coefficient of variation follows the normal distribution. Then, if the newly calculated coefficient of variation is outside of the 95% confidential interval, the curve is divided. Namely, the groups is divided by the characteristics of the coefficient of variation and the reasonable criteria is provided for establishing a multi-segmented rating curve. To validate the proposed method, it was applied to the data generated by three artificial power functions. In addition, to confirm the applicability of the proposed method, it is applied to the water stage and discharge data of the Muju water stage gauging station and Sangegyo water stage gauging station. As a result, it is found that the automatically divided rating curve improves the accuracy and extrapolation accuracy of the rating curve. Finally, through the residual analysis using Shapiro-Wilk normality test, it is confirmed that the residual of water stage-discharge relationship curve tends to follow the normal distribution.

A Study on the Temporal Variation of Hydraulic Characteristics by the Stage-Discharge Relation Curve - at Jeokpogyo, Jindong of the Nakdong River - (수위-유량 관계곡선을 이용한 경년별 수리특성량 변동에 관한 연구 - 낙동강 적포교(赤浦橋) 및 진동(津洞) 지점을 중심으로 -)

  • Lee, Jae-Joon;Seol, Ji-Su;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.867-876
    • /
    • 2009
  • In this study, the stage-discharge relation curve made in 2006 is selected with standard curves to seize the hydraulic and geometric characteristics for the temporal variation of the river bed. The relationships among the standard stage-discharge relation curve and the existing stage-discharge relation curves, water level, cross sectional area, and flow velocity are analyzed. Jeokpogyo and Jindong which are the key station of Nakdong river are chosen for the study, with respect to the current river bed to convert the existing stage-discharge curves. The relationships for conversion of previous data, between water level and flow velocity are got. Also the relation equation between water level and cross sectional area and water level, flow velocity are derived. These conversion relationships shows good agreement between observed values and estimated values. It will be very useful to convert past hydraulic quantitations to current one.

A Study on the Modification Method of Flow Data in the Sewage System (하수관거 유량자료의 보정방법에 관한 연구)

  • Kim, Dae-Geun;Gong, Min-Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.495-502
    • /
    • 2003
  • In order to modify incorrect flow data in the sewage system, the method using the stage-discharge relation and hydraulic characteristic curve of sewer pipe are applied. The modified data were verified with field measured data and the infiltration analysis using the modified data was carried out. When flowrate were measured using the flow-meter in fair weather, the stage data were comparatively consistent but velocity data were very poor for the most part. Therefore, it was recommended that sewage flowrate variation characteristic curve and infiltration were computed using the modified data on the basis of stage data. Especially, in the case of using the hydraulic characteristic curve, extrapolation results of the rainy season flowrate using regression curve on the basis of the data in fair weather were also reasonable.

A Study on Discharge Estimation by Representative Parameter Method in Open Channels (개수로에서의 대표 매개변수 방법에 의한 유량산정에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.637-644
    • /
    • 2012
  • The discharge estimation that means the most important element in a wetlands ecosystem and rivers is a prime concern. All the interim, this discharge estimation depends on stage-discharge curve, but the limitation of stage-discharge curve that uses only connection between the stage and discharge is widely well known. Thus, this paper proposed a method of discharge estimation in a section through "representative parameter estimation method" by using Manning and Chezy equations that have been extensively used in an open channel. Each result is presented by both RMSE and Discrepancy Ratio. The scale difference for the results between laboratory and natural open channel data existed, but the each result showed that the estimated discharge agree with the measured discharge. If the verification and improvement are conducted in various rivers through continuous study, the easy and rapid discharge estimation will be possible. So, the proposed method will be utilized in the water resources fields.

Improvement of Rating-curve by HEC-RAS (HEC-RAS를 이용한 수위-유량곡선의 개선방안)

  • Lee, Yeong Hwa;Lee, Chang Su;Park, Gi Beom
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.759-765
    • /
    • 2004
  • HEC-RAS model is used for estimation of rating-curve of Musung in Wi stream. Discharge is computed from stage estimated by HEC-RAS model, is compared with the discharge of water surface slope method. The relative deviation of observed and computed discharge is 5.37%, and shows as a good results. A rating-curve by HEC-RAS model shows better results than by water surface slope method.

A Method of Rating Curve Adjustment (수위유량곡선보정방법에 대하여)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4116-4120
    • /
    • 1976
  • With the use of many rivers increased nearly to the capacity, the need for information concerning daily quantities of water and the total annual or seasonal runoff has became increased. A systematic record of the flow of a river is commonly made in terms of the mean daily discharge Since. a single observation of stage is converted into discharge by means of rating curve, it is essential that the stage discharge relations shall be accurately established. All rating curves have the looping effect due chiefly to channel storage and variation in surface slope. Loop rating curves are most characteristic on streams with somewhat flatter gradients and more constricted channels. The great majority of gauge readings are taken by unskilled observers once a day without any indication of whether the stage is rising or falling. Therefore, normal rating curves shall show one discharge for one gauge height, regardless of falling or rising stage. The above reasons call for the correction of the discharge measurements taken on either side of flood waves to the theoretical steady-state condition. The correction of the discharge measurement is to consider channel storage and variation in surface slope. (1) Channel storage As the surface elevation of a river rises, water is temporarily stored in the river channel. There fore, the actual discharge at the control section can be attained by substracting the rate of change of storage from the measured discharge. (2) Variation in surface slope From the Manning equation, the steady state discharge Q in a channel of given roughness and cross-section, is given as {{{{Q PROPTO SQRT { 1} }}}} When the slope is not equal, the actual discharge will be {{{{ { Q}_{r CDOT f } PROPTO SQRT { 1 +- TRIANGLE I} CDOT TRIANGLE I }}}} may be expressed in the form of {{{{ TRIANGLE I= { dh/dt} over {c } }}}} and the celerity is approximately equal to 1.3 times the mean watrr velocity. Therefore, The steady-state discharge can be estimated from the following equation. {{{{Q= { { Q}_{r CDOT f } } over { SQRT { (1 +- { A CDOT dh/dt} over {1.3 { Q}_{r CDOT f }I } )} } }}}} If a sufficient number of observations are available, an alternative procedure can be applied. A rating curve may be drawn as a median line through the uncorrected values. The values of {{{{ { 1} over {cI } }}}} can be yielded from the measured quantities of Qr$.$f and dh/dt by use of Eq. (7) and (8). From the 1/cI v. stage relationship, new vlues of 1/cI are obtained and inserted in Eq. (7) and (8) to yield the steady-state discharge Q. The new values of Q are then plotted against stage as the corrected steadystate curve.

  • PDF