• Title/Summary/Keyword: stage prediction

Search Result 1,108, Processing Time 0.024 seconds

Prediction of Time to Recurrence and Influencing Factors for Gastric Cancer in Iran

  • Roshanaei, Ghodratollah;Ghannad, Masoud Sabouri;Safari, Maliheh;Sadighi, Sanambar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2639-2642
    • /
    • 2012
  • Background: The patterns of gastric cancer recurrence vary across societies. We designed the current study in an attempt to evaluate and reveal the outbreak of the recurrence patterns of gastric cancer and also prediction of time to recurrence and its effected factors in Iran. Materials and Methods: This research was performed from March 2003 to February 2007. Demographic characteristics, clinical and pathological diagnosis and classification including pathologic stage, tumor grade, tumor site and tumor size in of patients with GC recurrent were collected from patients' data files. To evaluate of factors affected on the relapse of the GC patients, gender, age at diagnosis, treatment type and Hgb were included in the research. Data were analyzed using Kaplan-Meier and logistic regression models. Results: After treatment, 82 patients suffered recurrence, 42, 33 and 17 by the ends of first, second and third years. The mean ( SD) and median ( IQR) time to recurrence in patients with GC were 25.5 (20.6-30.1) and 21.5 (15.6-27.1) months, respectively. The results of multivariate analysis logistic regression showed that only pathologic stage, tumor grade and tumor site significantly affected the recurrence. Conclusions: We found that pathologic stage, tumor grade and tumor site significantly affect on the recurrence of GC which has a high positive prognostic value and might be functional for better follow-up and selecting the patients at risk. We also showed time to recurrence to be an important factor for follow-up of patients.

Applicability of Settlement Prediction Methods to Selfweight Consolidated Ground (자중압밀지반에 대한 침하예측기법의 적용성)

  • Jun, Sang-Hyun;Jeon, Jin-Yong;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.91-99
    • /
    • 2008
  • Applicability of existing methods of predicting consolidation settlement was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From extensive literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio-effective stress-permeability and typical self-weight consolidation curves with time were obtained by centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve was obtained by Terzaghi's consolidation theory and was compared with the results predicted by currently available methods such as Hyperbolic method, Asaoka's method, Hoshino's method and ${\sqrt{S}}$ method. All methods were found to have their own inherent error to predict final consolidation settlement. From results of analyzing the self-weight consolidation with time by using those methods, Asaoka's method predicted the best. Hyperbolic method predicted relatively well in error range of 2~24% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. For the case of relation curve of T vs $T/S^2$ showing the lineality after the middle stage, error range from Hoshino method was close to those from Hyperbolic method. However, Hoshino method is not able to predict the final settlement in the case of relation curve of T vs $T/S^2$ being horizontal. For the given data about self-weight consolidation after the middle stage, relation curve of T vs T/S from ${\sqrt{S}}$ method shows the better linearity than that of T vs $T/{\sqrt{s}}$ from Hyperbolic method.

  • PDF

EFFECT OF BASE FLOW AND TURBULENCE ON THE SEPARATION MOTION OF STRAP-ON ROCKET BOOSTERS (기저부 유동 및 난류가 다단 로켓의 단 분리 운동에 미치는 영향)

  • Ko, S.H.;Kim, J.K.;Han, S.H.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.83-86
    • /
    • 2007
  • Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.

  • PDF

Three Dimensional Construction Stage Analysis and Deformation Monitoring of a Reinforced Concrete Highrise Building (철근콘크리트조 초고층건물의 3차원 시공단계 해석 및 시공중 변형 계측)

  • Jeong, Daegye;Yu, Eunjong;Ha, Taehun;Lee, Sungho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2014
  • In this paper, axial strains and lateral displacements of columns in a 58-story reinforced concrete building were measured using vibrating wire gauge and laser scanner, respectively, and compared with predicted values. Predictions were obtained using ASAP, which is a 3D construction stage analysis program developed based on PCA report. Comparisons indicated that columns in the middle of floor plan showed good correlation with predictions. However, the columns in the corners showed some deviations. Lateral displacement of columns between measurement and estimation showed similar trends but considerable deviations, which are seemingly caused by construction error of column faces, and inaccuracy in differential vertical displacement prediction.

Study of the Prediction of Fatigue Damage Considering the Hydro-elastic Response of a Very Large Ore Carrier (VLOC) (유탄성 응답을 고려한 초대형 광탄 운반선(VLOC)의 피로 손상 예측 기법에 관한 연구)

  • Kim, Beom-Il;Song, Kang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Estimating fatigue damage is a very important issue in the design of ships. The springing and whipping response, which is the hydro-elastic response of the ship, can increase the fatigue damage of the ship. So, these phenomena should be considered in the design stage. However, the current studies on the the application of springing and whipping responses at the design stage are not sufficient. So, in this study, a prediction method was developed using fluid-structural interaction analysis to assess of the fatigue damage induced by springing and whipping. The stress transfer function (Stress RAO) was obtained by using the 3D FE model in the frequency domain, and the fatigue damage, including linear springing, was estimated by using the wide band damage model. We also used the 1D beam model to develop a method to estimate the fatigue damage, including nonlinear springing and whipping by the vertical bending moment in the short-term sea state. This method can be applied to structural members where fatigue strength is weak to vertical bending moments, such as longitudinal stiffeners. The methodology we developed was applied to 325K VLOC, and we analyzed the effect of the springing and whipping phenomena on the existing design.

Application of Numerical Weather Prediction Data to Estimate Infection Risk of Bacterial Grain Rot of Rice in Korea

  • Kim, Hyo-suk;Do, Ki Seok;Park, Joo Hyeon;Kang, Wee Soo;Lee, Yong Hwan;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.54-66
    • /
    • 2020
  • This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (KMA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (Ci) and the 20-day and 7-day moving averages of Ci for the inoculum build-up phase (Cinc) prior to the panicle emergence of rice plants and the infection phase (Cinf) during the heading stage of rice plants, respectively. Based on Cinc and Cinf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.

Fast Depth Video Coding with Intra Prediction on VVC

  • Wei, Hongan;Zhou, Binqian;Fang, Ying;Xu, Yiwen;Zhao, Tiesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3018-3038
    • /
    • 2020
  • In the stereoscopic or multiview display, the depth video illustrates visual distances between objects and camera. To promote the computational efficiency of depth video encoder, we exploit the intra prediction of depth videos under Versatile Video Coding (VVC) and observe a diverse distribution of intra prediction modes with different coding unit sizes. We propose a hybrid scheme to further boost fast depth video coding. In the first stage, we adaptively predict the HADamard (HAD) costs of intra prediction modes and initialize a candidate list according to the HAD costs. Then, the candidate list is further improved by considering the probability distribution of candidate modes with different CU sizes. Finally, early termination of CU splitting is performed at each CU depth level based on the Bayesian theorem. Our proposed method is incorporated into VVC intra prediction for fast coding of depth videos. Experiments with 7 standard sequences and 4 Quantization parameters (Qps) validate the efficiency of our method.

Prediction of Residual Resistance Coefficient of Low-speed Full Ships using Hull Form Variables and Model Test Results (선형변수 및 모형시험결과 데이터베이스를 활용한 저속비대선의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Kim, Myung-Soo;Yang, Kyung-Kyu;Lee, Young-Yeon;Yim, Geun-Tae;Kim, Jin;Hwang, Seung-Hyun;Kim, JungJoong;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.447-456
    • /
    • 2019
  • In the early stage of ship design, the rapid prediction of resistance of hull forms is required. Although there are more accurate prediction methods such as model test and CFD analysis, statistical methods are still widely used because of their cost-effectiveness and quickness in producing the results. This study suggests the prediction formula for the residual resistance coefficient (Cr) of the low-speed full ships. The formula was derived from the statistical analysis of model test results in KRISO database. In order to improve prediction accuracy, the local variables of hull forms are defined and used for the regression process. The regression formula for these variables using only principal dimensions of hull forms are also provided.

A Study on the Reliability Prediction for Space Systems (우주 시스템의 신뢰성 예측에 관한 연구)

  • Yu, Seung-U;Lee, Baek-Jun;Jin, Yeong-Gwon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.227-239
    • /
    • 2006
  • Reliability prediction provides a rational basis for design decisions such as the choice between alternative concepts, choice of part quality levels, derating factors to be applied, use of proven versus state-of-the-art techniques, and other factors. For this reasons, reliability prediction is essential functions in developing space systems. The worth of the quantitative expression lies in the information conveyed with the numerical value and the use which is made of that information and reliability prediction should be initiated early in the configuration definition stage to aid in the evaluation of the design and to provide a basis for item reliability allocation (apportionment) and establishing corrective action priorities. Reliability models and predictions are updated when there is a significant change in the item design availability of design details, environmental requirements, stress data, failure rate data, or service use profile. In this paper, the procedure, selection of reliability data and methods for space system reliability prediction is presented.

  • PDF

A Study on the Performance Prediction of Marine System using Approximation Model (근사모델을 이용한 해양시스템 성능예측에 관한 연구)

  • Lee, Jae-chul;Shin, Sung-chul;Lee, Soon-Sub;Kang, Dong-hoon;Lee, Jong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.286-294
    • /
    • 2016
  • In the initial design stage, the geometry of systems needs to be optimized regarding its performance. However, performance analysis is very time-consuming. Therefore, optimization becomes difficult/impossible problems because we need to evaluate the system performance for alternative design cases. To overcome this problem, many researchers perform prediction of system performance using the approximation model. The response surface method (RSM) is typically used to predict the system performance in the various research fields, but it presents prediction errors for highly nonlinear systems. The major objective of this paper is to propose a proper prediction method for marine system problems. Case studies of marine systems (the substructure of a floating offshore wind turbine considering hydrodynamic performance and bulk carrier bottom stiffened panels considering structure performance) verify that the proposed method is applicable to performance prediction in marine systems.