• Title/Summary/Keyword: stacking test

Search Result 200, Processing Time 0.027 seconds

Evaluation of cryogenic tensile properties of composite materials fabricated by fused deposition modeling 3D printer

  • Kang, Singil;Cha, Hojun;Ryu, Seungcheol;Kim, Kiwhan;Jeon, Seungmin;Lee, Jaesun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.8-12
    • /
    • 2022
  • Recently, research on applying composite materials to various industrial fields is being actively conducted. In particular, composite materials fabricated by Fused Deposition Modeling 3D printers have more advantages than existing materials as they have fewer restrictions on manufacturing shape, reduce the time required, weight. With these advantages, it is possible to consider utilizing composite materials in cryogenic environments such as the application of liquid oxygen and liquid hydrogen, which are mainly used in an aerospace and mobility. However, FDM composite materials are not verified in cryogenic environments less than 150K. This study evaluates the characteristics of composite materials such as tensile strength and strain using a UTM (Universal Testing Machine). The specimen is immersed in liquid nitrogen (77 K) to cool down during the test. The specimen is fabricated using 3D print, and can be manufactured by stacking reinforced fibers such as carbon fiber, fiber glass, and aramid fiber (Kevlar) with base material (Onyx). For the experimental method and specimen shape, international standards ASTM D638 and ASTM D3039 for tensile testing of composite materials were referenced.

Comparative Analysis of Preparation Time between Rack-type and Reel-type Fire Hoses (호스걸이형 소방호스와 호스릴 소방호스의 전개시간 비교 분석)

  • Hong, Suk-Hwan;Kim, Seo-Young;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.49-53
    • /
    • 2021
  • The objective of this study was to understand which type of fire hose should be placed in indoor fireplug box upon analyzing the preparation time between rack-type fire hose and reel-type one. With respect to the type of hose, rack-type stacking method was used and hose preparation time was measured with 5 times of repeat test, separating men and women. Study results reveal that preparation time of reel-type fire hose took longer than that of rack-type one in both men and women. For both rack-type hose and reel-type hose, preparation time by two persons took shorter than that by one man. Also, preparation time by three persons took shorted than that by two women. Preparation time for both rack-type hose and reel-type one by men took shorter than that by women. In summary, it was confirmed that rack-type hose could be prepared within shorter time than reel-type one. Since the size of drum set in the reel-type fire hose is relatively small, it had some difficulty in preparation of fire hose timely.

3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots (실내 자율주행 로봇을 위한 3차원 다층 정밀 지도 구축 및 위치 추정 알고리즘)

  • Kang, Gyuree;Lee, Daegyu;Shim, Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2022
  • Moving among multiple floors is one of the most challenging tasks for indoor autonomous robots. Most of the previous researches for indoor mapping and localization have focused on singular floor environment. In this paper, we present an algorithm that creates a multi-floor map using 3D point cloud. We implement localization within the multi-floor map using a LiDAR and an IMU. Our algorithm builds a multi-floor map by constructing a single-floor map using a LOAM-based algorithm, and stacking them through global registration that aligns the common sections in the map of each floor. The localization in the multi-floor map was performed by adding the height information to the NDT (Normal Distribution Transform)-based registration method. The mean error of the multi-floor map showed 0.29 m and 0.43 m errors in the x, and y-axis, respectively. In addition, the mean error of yaw was 1.00°, and the error rate of height was 0.063. The real-world test for localization was performed on the third floor. It showed the mean square error of 0.116 m, and the average differential time of 0.01 sec. This study will be able to help indoor autonomous robots to operate on multiple floors.

A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments (구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구)

  • Kim, Ye Jin;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

A Study on Construction Condition of Modular System by Structural Analysis of Construction Stage (시공단계 구조해석을 통한 적층형 모듈러주택의 시공조건 검토)

  • Jo, Min-Joo;Kim, Jong-Sung;Yu, Seong-Yong;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.143-150
    • /
    • 2015
  • At present, the actual condition is that Korean modular structures are limited to a low rise detached house and military barracks. And there is no standardized structural design method of stacked modular structure. Accordingly, in general, they don't review impact force in the stage of stacking and installing a module, the effect which wind load has on a structure in the stage of lifting, and inertial force occurring in the stage of lifting or transporting a module in the process of constructing a structure. Therefore, this study investigated the construction method of modular system to be studied in stages, and decided on the position to which load was applied and boundary condition in structural analysis at each construction stage. Besides, inertial force according to each speed was calculated in the lifting and wheeled transport of module. And we calculated impact load according to lifting speed in module stacking and installation work and wind load due to instantaneous wind speed in the installation work by lifting. On the basis of the suggested method, in the modular system to be studied, it carried out review of structure by changing determining conditions of load being applied by construction stage, such as in the stage of lifting, in the stage of transport, and in the stage of installation, and drew construction conditions securing stability structurally.

Study of Mechanical Properties and Porosity of Composites by Using Glass Fiber Felt (유리섬유 부직포 사용에 따른 복합재의 기공률 및 물성에의 영향 분석)

  • Lee, Ji-Seok;Yu, Myeong-Hyeon;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.42-46
    • /
    • 2022
  • In this study, when the carbon fiber composite was manufactured, the correlation between the porosity and mechanical properties according to the number of glass fiber felts laminated together and the stacking sequence was confirmed. The carbon fiber composite was manufactured by stacking glass fiber felts, which are highly permeable materials, and using vacuum assisted resin transfer molding (VARTM). Porosity was measured by photographing the cross-section of the specimen with an optical microscope and then using porosity calculation code of MATLAB, and mechanical properties were measured for tensile strength, modulus by tensile test. Furthermore, Pearson correlation coefficient between porosity and mechanical properties was calculated to confirm the correlation between two variables. As a result, the number of glass fiber felt increased and the distance from the center of laminated composites increased, the porosity increasing were confirmed. In addition, tensile strength/modulus showed a weak positive correlation with porosity. Also, in order to confirm the effect of only porosity on tensile strength and modulus, mechanical properties calculated by CLPT (Classical Laminate Plate Theory) and experimental values were compared, and the difference in tensile strength showed a strong positive correlation with porosity and the difference in modulus showed a weak positive correlation with porosity.

Fracture Mechanism and Characterization of Falling Weight Impact in CF/Epoxy Composite Plates Under Law-Velocity Impact (저속충격 하에서 CFRP 복합적층판의 낙추 충격특성과 파괴기구)

  • 임광희;박노식;김영남;김선규;심재기;양인영
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.53-60
    • /
    • 2004
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP laminate plates based on considerations of stress wave propagation theory. The absorbed energy of T300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 6.8J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen; however there was no big difference in case of quasi-isotropic specimens. The delamination areas of the impacted specimen were measured with the ultrasonic C-scanner to find correlation between impact energy and delamination area. The fracture surfaces were observed by using the SEM (scanning electron microscope) through a low-velocity impact test in order to confirm the fracture mechanism.

Experimental performance evaluation and comparison for lightweight piezo-composite actuator LIPCA (압전 복합재료 작동기 LIPCA에 대한 성능 비교실험 및 분석)

  • 김균열;박기훈;윤광준;박훈철
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.41-47
    • /
    • 2003
  • This paper is concerned with the performance evaluation and comparison analysis fur several kinds of LIPCA (Lightweight Piezo-Composite Actuator) device system. LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer was sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. To investigate the effect of lay-up structure of the LIPCA on the actuating performance, four kinds of actuator with different lay-up stacking sequence were designed, manufactured, and tested. The performance of each actuator was evaluated using an actuator test system consisted of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. From the comparison of the performance of the LIPCA prototypes, it was found that the actuator with higher coefficient of unimorph actuator can generate larger actuating displacement.

Development of Airframe Structure for Disaster and Public Safety Multicopter UAV (재난치안용 멀티콥터 무인기 기체구조 개발)

  • Shin, Jeong Woo;Lee, Seunggyu;Noh, Jeong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • Airframe structure development of the 35 kg class 'Disaster and Public Safety Multicopter' UAV is described in this paper. To reduce the airframe weight, T-700 grade CFRP composite material was used, and the fuselage was designed with the semi-monocoque structure and plate installed with the control and communication devices designed in a sandwich structure. The specimen tests for the laminated plate and pipe were conducted to verify the strength and stiffness of the designed parts. The stacking sequence of composite materials was determined by the static strength and vibration analysis, and landing gear strut was designed by the nonlinear analysis with decent speed and ground clearance requirements. The static strength test was performed to evaluate the structural integrity and to verify the landing gear behavior.

A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT (자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구)

  • Bae, Joo-Hyun;Park, Woon-Ji;Lee, Seoro;Park, Tae-Seon;Park, Sang-Bin;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.