• Title/Summary/Keyword: stable water isotopes

Search Result 54, Processing Time 0.02 seconds

Understanding the Nutritional Sources of Gastropods and Anomura from the Mangrove Forest of Weno Island, Micronesia (마이크로네시아 웨노섬의 맹그로브 숲에 서식하는 고둥류 및 집게의 영양원에 대한 이해)

  • Ko, Ah-Ra;Kim, Min-Seob;Ju, Se-Jong
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.427-439
    • /
    • 2013
  • Carbon cycling and productivity within Weno Island of Micronesia enclosed by the coral reef may be likely self-maintained and insignificantly affected by the open ocean. Therefore, it is important to understand the role of the mangrove known as providing the organic matter and habitats for many organisms in this enclosed area. In order to trace the nutritional source of fauna (mostly invertebrates) in the mangrove forest of Weno island, we analyzed the fatty acid (FA) and carbon and nitrogen stable isotopes of potential nutritional sources (mangrove leaf & pneumatophore, seagrass leaf & root, surface sediment, and particulate organic matter (POM) in water) and consumers (4 gastropods and anomura). The mangrove and seagrass contained the abundance of 18:2${\omega}$6, and 18:3${\omega}$3, whereas FAs associated with phytoplankton and bacteria were accounted for a high proportion in the surface sediment and POM. FA composition of consumers was found to be similar to those of the surface sediment, mangrove, and seagrass. These were also confirmed through the mixing model of stable isotope for contribution of nutritional sources to consumers. Overall results with the feeding types of investigated mangrove fauna indicate that investigated mangrove fauna obtained their nutrition from the various sources, i.e. the mangrove for Littorina cf. scabra, the microalgae for Strombus sp., and omnivorous Pagurus sp. and Terebralia cf. palustris. However, it is obvious that the nutrition of most species living in the mangrove ecosystem is highly dependent on the mangrove, either directly or indirectly. More detail food-web structure and function of the mangrove ecosystem would be established with the analysis of additional fauna and flora.

Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea (도계지역 오십천에서의 지하수 영향분석 - 수리지화학적 특성과 기원)

  • Hwang, Jeong Hwan;Song, Min Ho;Cho, Hea Ly;Woo, Nam C
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • Water quality of Oseepchun, Dogye area, was investigated quantitatively for its origin and hydrogeochemistry in relation to the influence of groundwater. Groundwater appears to be the principal source of Oseepchun from the water-quality monitoring data including redox potentials, composition of dissolved ions and their correlations, hydrogen and oxygen stable isotopic ratios, and the distribution and occurrence of contaminants. Water-quality type of the surface water was grouped by the water-rock interactions as $Ca-HCO_3$ type originated from carbonated bed-rocks in the Joseon Supergroup, (Ca, Mg)-$SO_4$ type related with dissolution of surfide minerals in coal beds of Pyeongan Supergroup, and (Ca, Mg)-($HCO_3$, $SO_4$) type of the mixed one. Locally water pollution occurs by high $SO_4$ from mine drainage and $NO_3$ from waste-treatment facility. Intensive precipitation in summer has no effect on the water type of Oseepchun, but increases the inflow of nitrate and chloride originated from land surface. Results of this study direct that groundwater-surface water interaction is intimate, and thus surface-water resource management should begin with groundwater characterization.

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Determining Groundwater-surface Water Interaction at Coastal Lagoons using Hydrogeochemical Tracers (수리화학적 환경 추적자를 이용한 강원도 석호지역에서의 지하수-지표수 상호작용에 대한 연구)

  • Dong-Hun Kim;Jung-Yun Lee;Soo Young Cho;Hee Sun Moon;Youn-Young Jung;Yejin Park;Yong Hwa Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • Groundwater-surface water interaction was evaluated using water quality parameters (temperature and electrical conductivity), distributions of stable water isotopes (δ2H and δ 18O), and Rn-222 in lagoon water, groundwater, and seawater at three coastal lagoons (Songji (SJ), Youngrang (YR), and Sunpo (SP) Lagoon) in South Korea. From the results of composition and distributions of δ2H and δ18O, it was found that groundwater fraction of lagoon water in YR Lagoon (76%) was slightly higher than those of SJ (42%), and SP (63%) Lagoon. Based on Rn-222 mass balance model, groundwater discharge into SJ Lagoon in summer 2020 was estimated to be (3.2±1.1)×103 m3 day-1, which showed a similar or an order of magnitude higher than the results of previous studies conducted in coastal lagoons. This study can provide advanced techniques to evaluate groundwater-surface water interaction in coastal lagoons, wetlands, and lakes, and help to determine the effects of groundwater on coastal ecosystems.

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia (인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.

Hydrogeochemical Evaluation of Crystalline bedrock Grondwater in a Coastal Area using Principal Component Analysis (주성분 분석을 이용한 해안지역 결정질 기반암 지하수의 수리지구화학적 평가)

  • Lee, Jeong-Hwan;Yoon, Jeong Hyoun;Cheong, Jae-Yeol;Jung, Haeryong;Kim, Soo-Gin
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.10-17
    • /
    • 2017
  • In this study, the evolution and origin of major dissolved constituents of crystalline bedrock groundwater in a coastal area were evaluated using multivariate statistical and groundwater quality analyses. The groundwater types mostly belonged to the $Na(Ca)-HCO_3$ and $Ca-HCO_3$ types, indicating the effect of cation exchange. Stable isotopes of water showed two areas divided by first and secondary evaporative effects, indicating a pattern of rapid hydrological cycling. Saturation indices of minerals showed undersaturation states. Thus, the degree of evolution of groundwater is suggested as in the low to intermediate stage, based on field and laboratory analytical conditions. According to the principal component analysis (PCA) results, the chemical components of EC, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $HCO_3{^-}$, $SO{_4}^{2-}$ (PCA 1), $F^-$ (PCA 3), $SiO_2$ (PCA 4), and $Fe^{2+}$ (PCA 5) are derived from various water-rock interactions. However, $NO_3{^-}$, $Na^+$, and $Cl^-$ (PCA 2) represented the chemical characteristics of both anthropogenic sources and natural sea spray.

Comparative Analysis on Resources Characteristics of Deep Ocean Water and Brine Groundwater (해양심층수와 지하염수 자원의 특성)

  • Moon D.S.;Jung D.H.;Kim H.J.;Shin P.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • Deep Ocean Water (DOW) is formed within restricted area including polar sea (high latitude) by cooling of surface seawater and globally circulating in the state of isolation from surface seawater. Although it is not as obvious as estuaries mixing, brine ground water is mixture of recirculated seawater and ground water. Seawater having high osmotic pressure infiltrates into an aquifer which is connected to the sea. In order to clarify the characteristics of deep ocean water and brine ground water, we investigated their origins, chemical compositions, water qualities and resources stabilities. While concentrations of stable isotopes (/sup 18/O and ²H) in seawater is 0‰, those in brine ground water is on meteoric water line or shifted toward oxygen line. It means that origin of brine ground water is different than that of deep ocean water. The ions dissolved in seawater (Na, Ca, Mg, K) are present in constant proportions to each other and to the total salt content of seawater. However deviations in ion proportions have been observed in some brine ground water. Some causes of these exception to the rule of constant proportions are due to many chemical reactions between periphery soil and ground water. While DOW has a large quantity of functional trace metals and biological affinity relative to brine ground water, DOW has relatively small amount of harmful bacteria and artificial pollutants.

  • PDF

Groundwater and Stream Water Acidification and Mixing with Seawater, and Origin of Liquefaction-Expelled Water in a Tertiary Formation in the Pohang Area (포항지역 제3기층내 지하수와 지표수의 산성화 및 해수혼합, 그리고 액상화 유출수 기원에 관한 연구)

  • Jeong, Chan Ho;Ou, Song Min;Lee, Yu Jin;Lee, Yong Cheon;Kim, Young Seog;Kang, Tae Seob
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.559-569
    • /
    • 2022
  • This study investigated the acidification and mixing with seawater of groundwater, stream water, and reservoir water in the Hunghae area of Pohang City, as well as the source of water expelled to the stream by liquefaction induced by the Pohang earthquake on 15 November 2017. Geologically, the area consists of Tertiary sedimentary rocks. We collected six samples of groundwater, five of reservoir water, four of stream water, two of liquefaction water, and one of seawater to analyze the chemical composition and stable isotopes (𝛿D and 𝛿18O). Gogkang Stream flows eastward through the central part of the study area into the East Sea. The groundwater and reservoir water in the lower part of the stream are acidic (pH < 4), have a Ca(Mg)-SO4 composition, and high concentrations of Al, Fe, and Mn, likely due to the oxidation of pyrite in Tertiary rocks. The groundwater in the upper part of the stream have a Ca(Na)-HCO3(Cl) composition, indicating the mixing of seawater with the stream water. The 𝛿D and 𝛿18O isotope data indicate the isotopic enrichment of reservoir water by evaporation. Based on the chemical and isotopic data, it is inferred that the two samples of liquefaction water originated from alluvium water in a transition zone with stream water, and from deep and shallow groundwaters that has been infiltrated by seawater, respectively.

Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea (동해안 석호 담염수 혼합대에서 지하수와 지표수 상호작용의 수리지질학적 특성 평가)

  • Jeon, Woo-Hyun;Kim, Dong-Hun;Lee, Soo-Hyoung;Hwang, Seho;Moon, Hee Sun;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.144-156
    • /
    • 2021
  • This study examined hydrogeological characteristics of groundwater and surface water interaction in the fresh-saline water mixed zone of East Coast lagoon area, Korea, using several technical approaches including hydrological, lithological, and isotopic methods. In addition, the fresh-saline water interface was evaluated using vertical electrical conductivity (EC) data. For this purpose, three monitoring wells (SJ-P1, SJ-P2, and SJ-P3) were installed across the Songji lagoon at depths of 7.4 to 9.0 m, and water level, EC, and temperature at the wells and in the lagoon (SJ-L1) were monitored using automatic transducers from August 1 to October 21, 2021. Isotopic composition of the groundwater, lagoon water, and sea water were also monitored in the mid-September, 2013. The mixing ratios calculated from oxygen and hydrogen isotopic composition decreased with increasing depth in the monitoring wells, indicating saline water intrusion. In the study area, the interaction of groundwater-surface water-sea water was evident, and residual salinity in the sedimentary layers created in the past marine environment showed disorderly characteristics. Moreover, the horizontal flow at the lagoon's edge was more dominant than the vertical flow.

Feeding Habits of the Glass Eel Anguilla japonica Determined by C and N Stable Isotopes in the Nakdong River Estuary of the Korean Peninsula (안정동위원소를 이용한 낙동강 하구 실뱀장어의 먹이 습성 분석)

  • KIM, JEONG BAE;LEE, WON-CHAN;KIM, HYUNG CHUL;HONG, SOKJIN;PARK, KYEONG DONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Wild glass eels found in the Korean peninsula are thought to migrate along the North Equatorial Current and undergo the processes of spawning and incubation in the Mariana Trench. Juveniles of the wild glass eels are collected from the southern and western coasts of the Korean peninsula and used as seeds for aquaculture. To investigate the feeding behavior of wild glass eels, we collected glass eels from the Nakdong River estuary during March and April 2014 and analyzed the total length, wet weight, dry weight, carbon and nitrogen contents, and stable isotope ratio of eels as well as water temperature and salinity. Water temperature in the Nakdong River estuary was $13.2{\pm}1.0$ (mean ${\pm}$ 1SE; range, $10.1{\sim}15.7)^{\circ}C$ and salinity was $24.8{\pm}2.4$ (13.2~34.0), showed a lower range from 13.2 to 30.0 (a mean of 21.2) when the floodgates were opened. The total length of glass eels was $56.5{\pm}0.2$ (51.0~63.6) mm, wet weight was $70.9{\pm}1.4$ (33.6~133.2) mg, and dry weight was $16.5{\pm}0.3$ (10.1~29.1) mg. Carbon and nitrogen contents of glass eels were $51.0{\pm}0.8%$ and $13.9{\pm}0.1%$, respectively. Mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of glass eels collected from the Nakdong River estuary were -20.9±0.2‰ and 6.1±0.1‰, displaying similar values to those of leptocephalus, glass eel larvae collected from the North Equatorial Current. Therefore, this result suggest that the glass eels collected from the Nakdong River estuary do not feed on prey after metamorphosis from eel larvae to glass eels their migration.