• Title/Summary/Keyword: stable current

Search Result 1,882, Processing Time 0.028 seconds

Current status and needs for special education to support educational gaps for students with disabilities after COVID-19 (코로나19 이후 장애학생 교육 격차 지원을 위한 특수교육 현황과 요구)

  • Janghyun Lim;Haein Jeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.33-39
    • /
    • 2023
  • Although COVID-19 has transitioned to a level 4 infectious disease in 2023 and has entered a stable trend, in special education settings, the importance of supporting the academic and social development gaps of students with disabilities caused by non-face-to-face learning situations such as remote classes during the COVID-19 period is emerging. there is. Accordingly, in this study, in order to identify and support the educational status and academic deficits of students with disabilities after COVID-19, we conducted a survey targeting 2,214 special education teachers in 17 cities and analyzed the results. As a result of the study, due to COVID-19, the developmental delay and educational gap in students with disabilities in terms of academics, emotions, and behavior deepened, and there was a high demand for manpower support, psychological counseling, and medical support for emotional behavior as a way to support this. Based on the results of this study, follow-up results were proposed.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects

  • Muhammad Saeed;Zoya Afzal;Fatima Afzal;Rifat Ullah Khan;Shaaban S. Elnesr;Mahmoud Alagawany;Huayou Chen
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1111-1127
    • /
    • 2023
  • Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.

Synthesis and electrochemical properties of cobalt sulfide-graphene oxide nanocomposites by hydrothermal method (수열합성법을 이용한 코발트 황화물-산화그래핀 나노복합체 제조 및 전기화학적 특성 연구)

  • Su Hwan Jeong;Joo-Hyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.203-209
    • /
    • 2023
  • Cobalt sulfide nanocomposites were synthesized through a simple hydrothermal method as anode materials for sodium ion batteries (SIBs). In this work, a cobalt sulfide nanoparticle (CoS-NF) and a cobalt sulfide nanocomposite integrated with reduced graphene oxide (CoS@G-NC) were fabricated for electrochemical energy storage performance of battery. The as-prepared CoS@G-NC electrode exhibited reversible and stable cycle performance (62 % after 30 cycles at current density of 200 mA g-1). The improved electrochemical property was attributed to the small grain growth and uniform distribution of cobalt sulfide during synthesis, which maximized the diffusion pathway for sodium ions and effectively suppressed the delamination and volume expansion of cobalt sulfide during the conversion reaction. The results provide promising anode materials for next-generation SIBs.

Development of an Automatic Measuring Program for the Craniovertebral Angle Using Photographic Image (사진 영상을 이용한 머리척추각 자동 측정 프로그램 개발)

  • Soo-Young Ye;Jong-Soon Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The prevalent use of mobile devices may contribute to musculoskeletal disorders, such as forward head posture (FHP), among users. The measurement of the craniovertebral angle (CVA) using photographic images is frequently employed in assessing FHP. Although manual CVA measurement using photographic images is reliable in clinical settings, computer programs or mobile applications to support tele-physical therapy are not yet fully developed. Therefore, in the current study, we propose an automatic method for extracting CVA from photographic images of FHP subjects to facilitate tele-physical therapy. Methods: To develop the automatic CVA measuring computer program, photographic images were obtained from 10 FHP participants. The location information obtained from the markers attached to the tragus and the spinous process of the seventh cervical vertebra were used as coordinates. Using these coordinates, straight line 1 was generated by connecting the seventh spinous process of the cervical vertebra and the tragus, while straight line 2 was drawn parallel to the coordinate obtained from the seventh spinous process of the cervical vertebra. The arc tangent function was used to calculate the angle between the two straight lines. The automatic CVA measurement computer program utilizing photographic images was developed using MATLAB (ver. 2016b). Results: The results showed that the automatic CVA measurement computer program demonstrated stable repeatability and high accuracy. Conclusion: The proposed approach was able to automatically estimate the CVA using photographic images. The developed computer program can potentially be used for easier and more reliable clinical assessment of FHP.

Current status of opioid prescription in South Korea using narcotics information management system

  • Soo-Hyuk Yoon;Jeongsoo Kim;Susie Yoon;Ho-Jin Lee
    • The Korean Journal of Pain
    • /
    • v.37 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Background: Recognizing the seriousness of the misuse and abuse of medical narcotics, the South Korean government introduced the world's first narcotic management system, the Narcotics Information Management System (NIMS). This study aimed to explore the recent one-year opioid prescribing patterns in South Korea using the NIMS database. Methods: This study analyzed opioid prescription records in South Korea for the year 2022, utilizing the dispensing/administration dataset provided by NIMS. Public data from the Korean Statistical Information Service were also utilized to explore prescription trends over the past four years. The examination covered 16 different opioid analgesics, assessed by the total number of units prescribed based on routes of administration, type of institutions, and patients' sex and age group. Additionally, the disposal rate for each ingredient was computed. Results: In total, 206,941 records of 87,792,968 opioid analgesic units were analyzed. Recently, the overall quantity of prescribed opioid analgesic units has remained relatively stable. The most prescribed ingredient was oral oxycodone, followed by tapentadol and sublingual fentanyl. Tertiary hospitals had the highest number of dispensed units (49.4%), followed by community pharmacies (40.2%). The highest number of prescribed units was attributed to male patients in their 60s. The disposal rates of the oral and transdermal formulations were less than 0.1%. Conclusions: Opioid prescription in South Korea features a high proportion of oral formulations, tertiary hospital administration, pharmacy dispensing, and elderly patients. Sustained education and surveillance of patients and healthcare providers is required.

Evaluation of Insulation Characteristics of Submarine Cables in Offshore Wind Farm by Excessive Tension (과도한 인장력에 따른 해상풍력단지 해저케이블의 절연 특성 평가)

  • Seung-Won Lee;Jin-Wook Choe;Ik-Su Kwon;Dong-Eun Kim;Hae‑Jong Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.286-291
    • /
    • 2024
  • Research on aged insulation of cables by stress is constantly being considered for reliable and stable power transmission of offshore wind farms. This study aimed to evaluate the insulation characteristic of aged XLPE (cross-linked polyethylene) insulation for application of offshore wind farms. In this study, The XLPE insulation of cable was set as various mechanical strains. The XLPE insulation is exposed to the mechanical stress below yield strain of 5%, 10%, and 20%. Aged samples were tested by using the method of AC BDV (alternative current breakdown voltage), tensile strength, elongation, and SEM (scanning electron microscope) to obtain insulation characteristics. The experimental results show that the dielectric breakdown of the sample with a strain 20% was 50% lower than the unaged sample; thereby, demonstrating that the mechanical strain that occurred in the submarine cables can weaken the insulation characteristics. Therefore, mechanical strain should be monitored when laying and operating submarine cables for offshore wind farms.

Current status and future trends for pork production in the United States of America and Canada

  • M. Todd See
    • Animal Bioscience
    • /
    • v.37 no.4_spc
    • /
    • pp.775-785
    • /
    • 2024
  • Pork production is a significant agricultural enterprise in the United States and Canada. The United States is the third-largest global producer of pork and Canada ranks seventh in pork production. The North American Free Trade Agreement and its successor, the U.S.-Mexico-Canada Agreement, have facilitated trade and integration between the two countries. The majority of production systems are modern and intensive, characterized by large vertically integrated farms using advanced technologies. Both nations benefit from their status as major producers of feed grains, with the United States leading in corn and soybeans, while Canada excels in canola and barley production. The regulatory frameworks for food safety, animal welfare, and environmental stewardship differ slightly, with the FDA and USDA overseeing these aspects in the United States, and Health Canada and the Canada Food Inspection Agency in Canada. The United States and Canada also have well-established distribution networks for pork products, relying on both domestic and international markets. Export markets play a crucial role, with the United States being a major importer of Canadian pigs, and both countries exploring opportunities in Asia. Despite a rise in global demand, domestic pork consumption trends differ, with per capita consumption remaining stable in the USA and declining in Canada. Changing consumer preferences, including a demand for ethically raised and locally sourced pork, may influence production practices. Future trends in pig production include a focus on consumer concerns, sustainability, disease prevention, reduction of antimicrobial use, and advancements in technology. The industry is adapting to challenges such as disease outbreaks and changing regulations, with a strong emphasis on animal welfare. Labor and workforce considerations, along with advancements in technology and automation, are expected to shape the efficiency of pork production in the future.

Structural evaluation of degradation products of Loteprednol using LC-MS/MS: Development of an HPLC method for analyzing process-related impurities of Loteprednol

  • Rajesh Varma Bhupatiraju;Bikshal Babu Kasimala;Lavanya Nagamalla;Fathima Sayed
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.98-113
    • /
    • 2024
  • The current investigation entails the characterization of five degradation products (DPs) formed under different stress conditions of loteprednol using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, this study developed a stable high-performance liquid chromatography (HPLC) method for evaluating loteprednol along with impurities. The method conditions were meticulously fine-tuned which involved the exploration of the appropriate solvent, pH, flow of the mobile phase, columns, and wavelength. The method conditions were carefully chosen to successfully resolve the impurities of loteprednol and were employed in subsequent validation procedures. The stability profile of loteprednol was exposed to stress degradation experiments conducted under five conditions, and DPs were structurally characterized by employing LC-MS/MS. The chromatographic resolution of loteprednol and its impurities along with DPs was effectively achieved using a Phenomenex Luna 250 mm C18 column using 0.1 % phosphoric acid, methanol, and acetonitrile in 45:25:30 (v/v) pumped isocratically at 0.8 mL/min with 243 nm wavelength. The method produces an accurate fit calibration curve in 50-300 ㎍/mL for loteprednol and LOQ (0.05 ㎍/mL) - 0.30 ㎍/mL for its impurities with acceptable precision, accuracy, and recovery. The stress-induced degradation study revealed the degradation of loteprednol under basic, acidic, and photolytic conditions, resulting in the formation of seven distinct DPs. The efficacy of this method was validated through LC-MS/MS, which allowed for the verification of the chemical structures of the newly generated DPs of loteprednol. This method was appropriate for assessing the impurities of loteprednol and can also be appropriate for structural and quantitative assessment of its degradation products.

Performance Analysis to Evaluate the Suitability of MicroVM with AI Applications for Edge Computing

  • Yunha Choi;Byungchul Tak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.107-116
    • /
    • 2024
  • In this paper, we analyze the performance of MicroVM when running AI applications on an edge computing environment and whether it can replace current container technology and traditional virtual machines. To achieve this, we set up Docker container, Firecracker MicroVM and KVM virtual machine environments on a Raspberry Pi 4 and executed representative AI applications in each environment. We analyze the inference time, total CPU usage and trends over time and file I/O performance on each environment. The results show that there is no significant performance difference between MicroVM and container when running AI applications. Moreover, on average, a stable inference time over multiple trials was observed on MicroVM. Therefore, we can confirm that executing AI applications using MicroVM instead of container or heavy-weight virtual machine is suitable for an edge computing.