• Title/Summary/Keyword: stable algorithm

Search Result 1,314, Processing Time 0.023 seconds

A Velocity Disturbance Estimation System for the Stable Fine Seek Control Using a Genetic Algorithm (유전자 알고리즘을 이용한 안정적인 미동 탐색 제어를 위한 속도 외란 추정 시스템)

  • Jin, Kyoung Bog;Shin, Jin-Ho;Lee, Moonnoh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2012
  • This paper presents a velocity disturbance estimation system for the stable fine seek control using a genetic algorithm. To estimate accurately the velocity disturbance in spite of the uncertainties of fine actuator, the system utilizes an objective function to minimize the differences of the frequency characteristics between the nominal velocity control loop and the extremal velocity control loops. The objective function is considered by applying a genetic algorithm and the velocity disturbance is estimated by the measurable velocity, the adjusted velocity controller, and the fine actuator model. The proposed velocity disturbance estimation system is applied to the fine seek control system of a DVD recording device and is evaluated through the experimental results.

Nonlinear Compensation of A Secondary Path in Active Noise Control Using A Modified Filtered-X LMS Algorithm (수정된 FXLMS 알고리듬을 이용한 능동소음제어 시스템 2차 경로 비선형 특성 적응보상 기법)

  • Jeong, I.S.;Ahn, K.Y.;Nam, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.22-25
    • /
    • 2004
  • In active noise control (ANC) system, the convergence behavior of the Filtered- X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortion in the secondary path as in the power amplifiers (e.g., saturation), loudspeakers and transducers. This distortion may yields degrading the error reduction performance of the ANC systems. In this paper, the authors of this paper propose a more improved and stable FXLMS algorithm to compensate for the undesirable nonlinearity of the secondary-path, whereby the third-order Volterra model was employed for the identification of the nonlinear secondary-path. In particular, the proposed approach was based on the modification of the conventional FXLMS algorithm. Finally, the simulation results showed that the proposed approach yields better convergence property and more stable performance in the ANC systems.

  • PDF

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 최적 걸음새에 관한 연구)

  • 공정식;노경곤;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.115-123
    • /
    • 2004
  • This paper deals with the gait optimization of via points on biped robot. ZMP(Zero Moment point) is the most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, leg's trajectory and a desired ZMP trajectory is required, balancing motion is solved by FDM(Finite Difference Method). In this paper, optimal index is defined to dynamically stable walking of a biped robot, and genetic algorithm is applied to optimize gait trajectory and balancing motion of a biped robot. By genetic algorithm, the index of walking parameter is efficiently optimized, and dynamic walking stability is verified by ZMP verification equation. Genetic algorithm is only applied to balancing motion, and is totally applied to whole trajectory. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Galloping Algorithm of Quadruped Robots on Irregular Surface (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

Dynamics and GA-Based Stable Control for a Class of Underactuated Mechanical Systems

  • Liu, Diantong;Guo, Weiping;Yi, Jianqiang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The control of underactuated mechanical system is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)based stable control approach is proposed for the class of under actuated mechanical systems. The Lyapunov stability theory and system properties are utilized to guarantee the system stability to its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the system performance. This approach is applied to the underactuated double-pendulum-type overhead crane and the simulation results illustrate the complex system dynamics and the validity of the proposed control algorithm.

Routing Algorithm based on Link Stability for Ad Hoc Wireless Networks (애드 혹 무선 네트워크에서의 링크 안정성 기반 라우팅 알고리즘)

  • Lim Se-Young;Kim Hun;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.652-659
    • /
    • 2006
  • The routing algorithm is one of the key research areas in ad hoc networks. The most of existing routing algorithms depends on current availability of wireless link when finding the feasible path. Dependence on current information may mislead to a fragile communication path. Some routing approaches that take statistical average on received signal power enhance the possibility to find the most stable path, but have limitation on considering only the average power level. In this paper, we propose routing algorithm based on link stability for ad hoc network. The proposed algorithm not only takes statistical average, but also traces the degree of variations in received signal power. The simulation result support that the proposed algorithm is more likely to find the most stable path under the severe communication environment.

The Cubically Filtered Gradient Algorithm and Structure for Efficient Adaptive Filter Design (효율적인 적응 필터 설계를 위한 제 3 차 필터화 경사도 알고리즘과 구조)

  • 김해정;이두수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1714-1725
    • /
    • 1993
  • This paper analyzes the properties of such algorithm that corresponds to the nonlinear adaptive algorithm with additional update terms, parameterized by the scalar factors a1, a2, a3 and Presents its structure. The analysis of convergence leads to eigenvalues of the transition matrix for the mean weight vector. Regions in which the algorithm becomes stable are demonstrated. The time constant is derived and the computational complexities of MLMS algorithms are compared with those of the conventional LMS, sign, LFG, and QFG algorithms. The properties of convergence in the mean square are analyzed and the expressions of the mean square recursion and the excess mean square error are derived. The necessary condition for the CFG algorithm to be stable is attained. In the computer simulation applied to the system identification the CFG algorithm has the more computation complexities but the faster convergence speed than LMS, LFG and QFG algorithms.

  • PDF

The Real-Time Virtual Environment Control Using Haptic Interface System (촉각시스템을 이용한 실시간 가상환경제어)

  • Kang, Won-Chan;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we propose the haptic system for the real-time virtual environment-control, which controls the sense of sight, hearing and touch. In order to maintain the stable haptic system in this study, we apply the proxy force rendering algorithm and the real-time graphic deformation algorithm based on the FEM. The applied proxy algorithm makes the system possible to be more stable and prompt with a virtual object. Moreover, the haptic rendering algorithm is applied to work out a problem that the tactual transaction-period is different from the graphic transaction- period. The graphic deformation algorithm is developed in the real-time using the deformed FEM. To apply the FEM, a deformed material-model is produced and then the graphic deformation with this model is able to force. Consequently, the graphic rendering algorithm is deduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time. Applying this system to the PC, we prove that it is possible to deform the graphics and transact the haptic. Finally we suggest the variable simulation program to show the efficiency of this system.

Implementation of a Transformable Hexapod Robot for Complex Terrains (복잡한 지형에서 변형 가능한 6족 로봇의 구현)

  • Yoo, Young-Kuk;Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.65-74
    • /
    • 2008
  • This paper deals with the path creation for stable action of a robot and transformation by using the fuzzy algorithm. Also, the obstacle detection and environmental analysis are performed by a stereo vision device. The robot decides the range and the height using the fuzzy algorithm. Therefore the robot can be adapted in topography through a transformation by itself. In this paper, the robot is designed to have two advantages. One is the fast movability in flat topography with the use of wheels. The other is the moving capability in uneven ground by walking. It has six leg forms for a stable walk. The wheels are fixed on the legs of the robot, so that various driving is possible. The height and the width of robot can be changed variously using four joints of each leg. The wheeled joint has extra DOF for a rotation of vertical axis. So the robot is able to rotate through 360 degrees. The robot has various sensors for checking the own state. The stable action of a robot is achieved by using sensors. We verified the result of research through an experiment.

System Identification Using the Second Order MLMS Algorithm (제2차 MLMS 알고리즘을 이용한 시스템 Identification)

  • 김해정;이두수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.8-15
    • /
    • 1992
  • This paper analyzes the properties of such algorithm that corresponds to the LMS algorithm with additional update terms, parameterized by the scalar factors $\alpha$ and $\beta$, and presents its structure. The analysis of convergence leads to complex eigenvalues of the transition matrix for the mean weight vector. Regions in which the algorithm becomes stable are demonstrated. The computational cmomplexities of MLMS algorithms are compared with those of MADF, sign and the conventional LMS algorithms. In application of the system identification the second order momentum MLMS algorithm has faster convergence speed than LMS and the first order MLMS algorithms.

  • PDF