• 제목/요약/키워드: stabilizing cable

검색결과 12건 처리시간 0.018초

Swinging-up the Rotational Inverted Pendulum with Limited Sector of Arm Angle via Energy Control

  • Nundrakwang, Songmoung;Cahyadi, Adha I.;Isarakorn, Don;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2116-2119
    • /
    • 2005
  • Inverted pendulum is a classical example and a famous tool for testing the effectiveness of many control schemes. Owing to their nonlinearity and unstable characteristic, a controller development either for swinging-up or stabilizing its upright position had been a great interest of many researchers. In this paper, the swinging-up control of the inverted pendulum using energy control will be presented. However, the saturation function in its control law could harm the experimental equipments. In addition, this swinging-up method did not consider limited sector of the arm angle to avoid another hazard, for instance, the twisted cable in the apparatus. Therefore, in this paper the position control of the arm angle using simple PD control in accordance with the energy control is proposed. Consequently, the limited arm sector angle can be achieved and the saturation function can also be replaced effectively by the PD control.

  • PDF

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.