• Title/Summary/Keyword: stabilization reaction

Search Result 272, Processing Time 0.028 seconds

Stabilization of Hydrogen Peroxide using Malonic Acid in Fenton and Fenton-like reactions (펜톤 및 펜톤 유사반응에서 말론산을 이용한 과산화수소의 안정화)

  • Kim, Jee-Eun;Ha, Tae-Wook;Kim, Young-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.25-31
    • /
    • 2013
  • Hydrogen peroxide takes much of the cost for Fenton reaction applied for treatment of organic contaminants. Therefore, the effective use of hydrogen peroxide makes the technology more cost effective. The effective use of hydrogen peroxide is especially needed in the soil and groundwater remediation where complete mixing is not possible and it takes a long time for reactive species to transport to the fixed target compounds. Stabilization ability for hydrogen peroxide of malonic acid was evaluated in Fenton and Fenton-like reactions in this study. Malonic acid contributes on the stabilization of hydrogen peroxide by weak interaction between iron and the stabilizer and inhibiting the catalytic role of iron. The stabilization effect increased as the solution pH decrease below the $pK_{a1}$. The stabilization effect increased as the concentration of malonic acid increased and the effect was maximized at the malonic acid concentration of about ten times higher than the iron concentration. The model organic contaminant was successfully oxidized in the presence of the stabilizer but the degradation rate was slower than the system without the stabilizer. The stabilization effect was also proved in a Fenton-like reaction where magnetite and hematite were used instead of soluble iron species.

The Study On Lime-Stabilization of Decayed Oganic Wastes (부패성유기폐기물의 석회 안정화에 관한 연구)

  • 김홍래
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 1989
  • The aim of this study is, by the Lime-Stabilization of decayed Organic Wastes, in preventing the reclaimed Waste from being another pollution due to reclaiming those things. 1. A perfect reaction is possible by the addition of poor Stabilization-Lime of 5 percent in a short time of 5 minute. 2. PH of the Stabilization-handled Wastes rise over 12. 3. Malodorant of Stabilized Wastes is slight because malodorant Volatilize in the course of the Stabilization or is captured in the handled subetance. 4. The second pollution scarcely brings about because a rapid decomposition is impossible on account of the coating of Alkali Substance.

  • PDF

Studies on the Stabilization of Rayon Fabrics: 3. Effects of Long-Term Isothermal Stabilization at Low Temperatures and Chemical Pre-treatment (레이온직물의 안정화에 관한 연구: 3. 저온 장시간 등온 안정화 및 화학전처리 영향)

  • Cho, Chae Wook;Cho, Donghwan;Park, Jong Kyoo;Lee, Jae Yeol
    • Journal of Adhesion and Interface
    • /
    • v.11 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • In the present study, isothermal stabilization processes for rayon fabrics were performed at two relatively low temperatures $180^{\circ}C$ and $200^{\circ}C$ for a long period of time. The results of weight loss, dimensional shrinkage, X-ray diffraction and scanning electron microscopic observations studied with the rayon fabrics before and after the isothermal stabilization indicated that the chemical and physical changes of rayon precursor fibers proceeded continuously and slowly at the stabilization temperature below $200^{\circ}C$. And the pre-treatment with four different chemical compounds done prior to stabilization process influenced differently the characteristics of rayon fabrics. As a result, it was noticed that under the given stabilization conditions, $H_3PO_4$ and $Na_3PO_4$ played a role in catalyzing the stabilization reaction of rayon fabric whereas $NH_4Cl$ and $ZnCl_2$ played a role in delaying or retarding the reaction. $H_3PO_4$ showed the lowest percent weight loss of the fabric in the second stabilization conducted at $350^{\circ}C$. It was considered that phosphoric acid, which has a function of flame retardant, contributed to retarding somewhat the subsequent reaction even in the second stabilization step.

Formation and Stabilization of Raphasatin and Sulforaphene from Radish Roots by Endogenous Enzymolysis

  • Kim, Jae-Won;Kim, Mi-Bo;Lim, Sang-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • The biologically active compounds raphasatin and sulforaphene are formed during the hydrolysis of radishes by an endogenous myrosinase. Raphasatin is very unstable, and it is generated and simultaneously degraded to less active compounds during hydrolysis in aqueous media. This study determined the hydrolysis conditions to maximize the formation of raphasatin and sulforaphene by an endogenous myrosinase and minimize their degradation during the hydrolysis of radish roots. The reaction parameters, such as the reaction medium, reaction time, type of mixing, and reaction temperature were optimized. A stability test for raphasatin and sulforaphene was also performed during storage of the hydrolyzed products at $25^{\circ}C$ for 10 days. The formation and breakdown of raphasatin and sulforaphene in radish roots by endogenous enzymolysis was strongly influenced by the reaction medium, reaction time, and type of mixing. The production and stabilization of raphasatin in radishes was efficient in water and dichloromethane with shaking for 15 min at $25^{\circ}C$. For sulforaphene, the favorable condition was water as the reaction medium without shaking for 10 min at $25^{\circ}C$. The maximum yields of raphasatin and sulforaphene were achieved in a concurrent hydrolysis reaction without shaking in water for 10 min and then with shaking in dichloromethane for 15 min at $25^{\circ}C$. Under these conditions, the yields of raphasatin and sulforaphene were maximized at 12.89 and $1.93{\mu}mol/g$ of dry radish, respectively. The stabilities of raphasatin and sulforaphene in the hydrolyzed products were 56.4% and 86.5% after 10 days of storage in water and dichloromethane at $25^{\circ}C$.

A Study on Stabilization and Mechanical Properties of Polyacrylonitrile-based Fiber with Itaconic acid (이타콘산을 함유한 폴리아크릴로니트릴계 전구체섬유의 열안정화 및 그 물성에 관한 연구)

  • 신익기;이신희;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, a continuous stabilization process is used to make high-performance carbon fiber from polyacrylonitrile(PAM)-based fibers. The effect of oxygen content of PAN-based fiber on the stabilization process and the properties of the resultant carbon fibers is investigated. In order to research the progress of stabilization reaction FT-IR, elemental analysis, density, DSC, etc are used. Stabilization is carried out in air atmosphere from the 200 to $300^\circ{C}$ temperature range. An increase of PAN-based fibers diameter reduces the oxygen content during the continuous stabilization process. A higher oxygen content increase the density, tensile strength and modulus in the resultant carbon fibers. The most appropriate oxygen content in the stabilized fiber should be about 12%. Fibers having more than 2% oxygen content yield carbon fibers with inferior properties. Those carbon fibers also have sufficient commercial availability.

Study on the Real-Time Walking Control of a Humanoid Robot U sing Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Lee, Bo-Hee;Kim, Jin-Geol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.551-558
    • /
    • 2008
  • This paper deals with the real-time stable walking for a humanoid robot, ISHURO-II, on uneven terrain. A humanoid robot necessitates achieving posture stabilization since it has basic problems such as structural instability. In this paper, a stabilization algorithm is proposed using the ground reaction forces, which are measured using FSR (Force Sensing Resistor) sensors during walking, and the ground conditions are estimated from these data. From this information the robot selects the proper motion pattern and overcomes ground irregularities effectively. In order to generate the proper reaction under the various ground situations, a fuzzy algorithm is applied in finding the proper angle of the joint. The performance of the proposed algorithm is verified by simulation and walking experiments on a 24-DOFs humanoid robot, ISHURO-II.

Structural evolution and kinetic study of high isotacticity poly(acrylonitrile) during isothermal pre-oxidation

  • Zhang, Li;Dai, Yongqiang;Kai, Yi;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.229-235
    • /
    • 2011
  • Isotactic polyacrylonitrile (PAN) with triad isotacticity of 0.53, which was determined by $^{13}C$ NMR, using dialkylmagnesium as an initiator, was successfully synthesized. Isothermal treatment of iso-PAN was conducted in air at 200, 220, 250 and $280^{\circ}C$. Structural evolutions and chemical changes were studied with Fourier transformation infrared and wide-angle X-ray diffraction during stabilization. A new parameter $CNF={I_{2240cm}}^{-1}/ ({I_{1595cm}}^{-1}+f^*{I_{1595cm}}^{-1})$ was defined to evaluate residual nitrile groups. Crystallinity and crystal size were calculated with X-ray diffraction dates. The results indicated that the nitrile groups had partly converted into a ladder structure as stabilization proceeded. The rate of reaction increased with treatment temperature; crystallinity and crystal size decreased proportionally to pyrolysis temperature. The iso-conversional method coupled with the Kissinger and Flynn-Wall-Ozawa methods were used to determine kinetic parameters via differential scanning calorimetry analysis with different heating rates. The active energy of the reaction was 171.1 and 169.1 kJ/mol, calculated with the two methods respectively and implied the sensitivity of the reaction with temperature.

A Study on the Lime Stabilization of Livestock Waste (축산폐기물의 안정화 처리에 대한 연구)

  • Kim, Hyun-Chul;Choi, Yong-Su
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.91-99
    • /
    • 1995
  • One of alternative conventional technologies used for treatment of livestock wastes is composting process, and recently some mechanical composting processes are being practiced. It is, however, recognized the composting process also has its own limitations such as longer time requirement, and difficulties to estimate the degree of decomposition, etc. The incomplete compost contains potentially harmful materials to crops and public health due to instabilized organic contents and pathogenic organisms. The purpose of this investigation is to develop an innovative system whereby anxious livestock wastes are thoroughly stabilized and disinfected. Thus the overall management scheme should meet the following requirements. 1. A system should be in a cost-effective and environmentally sound manner. 2. Sludges must be chemically stabilized and bacteriologically safe. 3. Odor-free by product should be applied to crop land. 4. Sludges are sources of fertilizer nutrients and/or soil amendments to enhance crop production. 5. And they can be used as potential pH adjusting agent of the acidified soils. Overall effectiveness of the developed system is experimentally tested to satisfy the preset criteria and requirements. Major experiments are divided into four categories: they are 1. chemical stability test, 2. optimal condition test of stabilization process, 3. bacteriological examination and disinfection tests, and 4. deodorization tests The stabilization process is consisted of the stabilizing reaction process and the drying process. Stabilized wastes is dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. The stabilization process is consisted of the stabilizing reaction process and drying process. Stabilized wastes are dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about 300g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. In the stabilization reaction process, the pH of wastes is lowered from initial values of 12.3 to 8.6. High pH prevents odor production and kills pathogenic organisms. Organic matter contents in the stabilized wastes are about 50% and the sum of contents of fertilizer elements such as total nitrogen, $P_2O_5$ and $K_2O$ are about 5.3%. The livestock wastes that are stabilized chemically and hygienically can be used as a good soil conditioner and/or organic fertilizer.

  • PDF

Engineering properties of expansive clayey soil stabilized with lime and perlite

  • Calik, Umit;Sadoglu, Erol
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.403-418
    • /
    • 2014
  • There are around 6700 millions tons of perlite reserves in the world. Although perlite possesses pozzolanic properties, it has not been so far used in soil stabilization. In this study, stabilization with perlite and lime of an expansive clayey soil containing smectite group clay minerals such as montmorillonite and nontronite was investigated experimentally. For this purpose, test mixtures were prepared with 8% of lime (optimum lime ratio of the soil) and without lime by adding 0%, 10%, 20%, 30%, 40% and 50% of perlite. Geotechnical properties such as compaction, Atterberg limits, swelling, unconfined compressive strength of the mixtures and changes of these properties depending on perlite ratio and time were determined. The test results show that stabilization of the soil with combination of perlite and lime improves the geotechnical properties better than those of perlite or lime alone. This experimental study unveils that the mixture containing 30% perlite and 8% lime is the optimum solution in stabilization of the soil with respect to strength.

Developing Continuous Stabilization Process for Textile-Grade PAN Fiber-Based Carbon Fiber Using UV Irradiation (저가형 탄소섬유 개발을 위한 자외선 조사 기반 의류용 PAN 섬유의 연속식 안정화 공정 개발)

  • Moon, Joon Ha;Seong, Honggyu;Yoo, Jiseon;Cho, Se Youn;Choi, Jaewon
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.418-423
    • /
    • 2022
  • Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textile-grade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22 GPa and tensile modulus of 249 ± 5 GPa.