• Title/Summary/Keyword: stabilization algorithm

Search Result 282, Processing Time 0.024 seconds

Digital Image Stabilization in the 2-axes Stabilization System using Zero-crossing of the Rotational Motion (2축 안정화 시스템에서 zero-crossing을 이용한 영상 안정화)

  • Kim, Dong-No;Kim, Gi-Hong;Jeong, Tae-Yeon;Gwon, Yeong-Do;Kim, Deok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.396-399
    • /
    • 2003
  • This paper proposes a simple digital image stabilization(DIS) algorithm for roll motion, which has not been compensated in the 2-axes mechanical stabilization system, using aero-crossing of the rotational motion vectors. The 2-axes stabilization system cannot stabilize rolled images, which causes the deteriorated performance of the object detection and recognition. In this paper, we propose the rotational motion stabilization algorithm which estimates and compensates global motion in terms of rotational center and rotational angle. Both the synthetic images with undesirable rotational disturbance and the real images from 2-axes stabilization system are used to evaluate the proposed algorithm. The results show that our proposed algorithm suppresses the undesirable rotational disturbance effectively.

  • PDF

A Study on Stabilization of Walking and Working Motion of Biped Robot (보행로봇의 워킹 및 작업동작 안정화에 관한 연구)

  • Ha, Eon-Tae;Shim, Hyeon-Seok;Park, In-Man;Lee, Sang-Hyeok;Cha, Bo-Nam;Park, Seong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.39-41
    • /
    • 2016
  • In the paper, we propose an stable walking algorithm of biped robot on the ground and working motion stabilization algorithm against external disturbances. We propose obstacle hurdling, incline walking, and going-up stairs algorithm by using infrared sensors and F/T sensors. Also, posture stabilization algorithm against external forces is designed using F/T sensors. Infrared sensors are used to detect the obstacles in he working environment and F/T sensors are used to obtain the ZMP of biped robot. The experimental results show that the biped robot performs obstacle avoidance, obstacle hurdling, walking on the inclined plane by using the proposed walking moton stabilization algorithm.

Stabilization and Tracking Algorithms of a Shipboard Satellite Antenna System (선박용 위성 안테나 시스템의 안정화 및 추적 알고리즘)

  • Koh, Woon-Yong;Hwang, Seung-Wook;Ha, Yun-Su;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents the development of development of stabilization and tracking algorithms for a shipboard satellite antenna system. In order to stabilize the satellite antenna system designed in the previous work, a model for each control axis is derived and its parameters are estimated using a genetic algorithm, and the state feedback controller is designed based on the linearized model. Then a tracking algorithm is derived to overcome some drawbacks of the step tracking. The proposed algorithm searches for the best position using gradient-based formulae and signal intensities measured according to a search pattern. The effectiveness of both the stabilization and tracking algorithms is demonstrated through experiment using real-world data.

A Stabilization algorithm for Fuzzy Systems with Singleton Consequents

  • Michio Sugeno;Lee, Chang-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.36-41
    • /
    • 1998
  • This paper presents a stabilization algorithm for a class of fuzzy systems with singleton consequect. To this aim, we introduce two canonical forms of an unforced fuzzy system and a stability theorem. A design example is shown to verify the stabilization algorithm.

  • PDF

Spurious mode distinguish by eigensystem realization algorithm with improved stabilization diagram

  • Qu, Chun-Xu;Yi, Ting-Hua;Yang, Xiao-Mei;Li, Hong-Nan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.743-750
    • /
    • 2017
  • Modal parameter identification plays a key role in the structural health monitoring (SHM) for civil engineering. Eigensystem realization algorithm (ERA) is one of the most popular identification methods. However, the complex environment around civil structures can introduce the noises into the measurement from SHM system. The spurious modes would be generated due to the noises during ERA process, which are usually ignored and be recognized as physical modes. This paper proposes an improved stabilization diagram method in ERA to distinguish the spurious modes. First, it is proved that the ERA can be performed by any two Hankel matrices with one time step shift. The effect of noises on the eigenvalues of structure is illustrated when the choice of two Hankel matrices with one time step shift is different. Then, a moving data diagram is proposed to combine the traditional stabilization diagram to form the improved stabilization diagram method. The moving data diagram shows the mode variation along the different choice of Hankel matrices, which indicates whether the mode is spurious or not. The traditional stabilization diagram helps to determine the concerned truncated order before moving data diagram is implemented. Finally, the proposed method is proved through a numerical example. The results show that the proposed method can distinguish the spurious modes.

A Method for Object Tracking Based on Background Stabilization (동적 비디오 기반 안정화 및 객체 추적 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • This paper proposes a robust digital video stabilization algorithm to extract and track an object, which uses a phase correlation-based motion correction. The proposed video stabilization algorithm consists of background stabilization based on motion estimation and extraction of a moving object. The motion vectors can be estimated by calculating the phase correlation of a series of frames in the eight sub-images, which are located in the corner of the video. The global motion vector can be estimated and the image can be compensated by using the multiple local motions of sub-images. Through the calculations of the phase correlation, the motion of the background can be subtracted from the former frame and the compensated frame, which share the same background. The moving objects in the video can also be extracted. In this paper, calculating the phase correlation to track the robust motion vectors results in the compensation of vibrations, such as movement, rotation, expansion and the downsize of videos from all directions of the sub-images. Experimental results show that the proposed digital image stabilization algorithm can provide continuously stabilized videos and tracking object movements.

Control Algorithm for Stabilization of Tilt Angle of Unmanned Electric Bicycle

  • Han, Sangchul;Han, Jongkil;Ham, Woonchul
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.176-180
    • /
    • 2001
  • In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the length of bicycle\`s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.

  • PDF

Improved image alignment algorithm based on projective invariant for aerial video stabilization

  • Yi, Meng;Guo, Bao-Long;Yan, Chun-Man
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3177-3195
    • /
    • 2014
  • In many moving object detection problems of an aerial video, accurate and robust stabilization is of critical importance. In this paper, a novel accurate image alignment algorithm for aerial electronic image stabilization (EIS) is described. The feature points are first selected using optimal derivative filters based Harris detector, which can improve differentiation accuracy and obtain the precise coordinates of feature points. Then we choose the Delaunay Triangulation edges to find the matching pairs between feature points in overlapping images. The most "useful" matching points that belong to the background are used to find the global transformation parameters using the projective invariant. Finally, intentional motion of the camera is accumulated for correction by Sage-Husa adaptive filtering. Experiment results illustrate that the proposed algorithm is applied to the aerial captured video sequences with various dynamic scenes for performance demonstrations.

A Study on an Image Stabilization for Car Vision System (차량용 비전 시스템을 위한 영상 안정화에 관한 연구)

  • Lew, Sheen;Lee, Wan-Joo;Kang, Hyun-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.957-964
    • /
    • 2011
  • The image stabilization is the procedure of stabilizing the blurred image with image processing method. Due to easy detection of global motion, PA(Projection algorithm) based on digital image stabilization has been studied by many researchers. PA has the advantage of easy implementation and low complexity, but in the case of serious rotational motion the accuracy of the algorithm will be cut down because of its fixed exploring range, and, on the other hand, if extending the exploring range, the block for detecting motion will become small, then we cannot detect correct global motion. In this paper, to overcome the drawback of conventional PA, an Iterative Projection Algorithm (IPA) is proposed, which improved the correctness of global motion by detecting global motion with detecting block which is appropriate to different extent of motion. With IPA, in the case of processing 1000 continual frames shot in automobile, compared with conventional algorithm and other detecting range, the results of PSNR is improved 6.8% at least, and 28.9% at the most.

Video Stabilization Algorithm of Shaking image using Deep Learning (딥러닝을 활용한 흔들림 영상 안정화 알고리즘)

  • Lee, Kyung Min;Lin, Chi Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • In this paper, we proposed a shaking image stabilization algorithm using deep learning. The proposed algorithm utilizes deep learning, unlike some 2D, 2.5D and 3D based stabilization techniques. The proposed algorithm is an algorithm that extracts and compares features of shaky images through CNN network structure and LSTM network structure, and transforms images in reverse order of movement size and direction of feature points through the difference of feature point between previous frame and current frame. The algorithm for stabilizing the shake is implemented by using CNN network and LSTM structure using Tensorflow for feature extraction and comparison of each frame. Image stabilization is implemented by using OpenCV open source. Experimental results show that the proposed algorithm can be used to stabilize the camera shake stability in the up, down, left, and right shaking images.