• Title/Summary/Keyword: stabilizable means

Search Result 3, Processing Time 0.024 seconds

On the Structure of the Transfer Function which can be Structurally Stabilized by the PID, PI, PD and P Controller

  • Kang, Hwan-Il;Jung, Yo-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.286-286
    • /
    • 2000
  • We consider a negative unity feedback control system in which Che PIO, PI, PD or P controller and a transfer function having only poles are in cascade, We define the notion of the structural polynomial which means that there exists a subdomain of the coefficient space in which the polynomial is Hurwitz (left half plane stable) polynomial. We obtain the necessary and sufficient condition of the structure of the transfer function of which the characteristic polynomial is a structural polynomial, In addition, this paper present another necessary and sufficient condition for the existence of a constant gain controller with which the characteristic polynomial is structurally stable, For the structurally stabilizable P controller, it is allowed that the transfer function may not to all pole plants.

  • PDF

Analysis and Approximation of Linear feedback control problems for the Boussinesq equations

  • 최영미;이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.6-6
    • /
    • 2003
  • In this work we consider the mathematical formulation and numerical resolution of the linear feedback control problem for Boussinesq equations. The controlled Boussinesq equations is given by $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla}u+{\nabla}p={\beta}{\theta}g+f+F\;\;in\;(0,\;T){\times}\;{\Omega}$$, $${\nabla}{\cdot}u=0\;\;in\;(0,\;T){\times}{\Omega}$$, $$u|_{{\partial}{\Omega}=0,\;u(0,x)=\;u_0(x)$$ $$\frac{{\partial}{\theta}}{{\partial}t}-k{\Delta}{\theta}+(u{\cdot}){\theta}={\tau}+T,\;\;in(0,\;T){\times}{\Omega}$$ $${\theta}|_{{\partial}{\Omega}=0,\;\;{\theta}(0,X)={\theta}_0(X)$$, where $\Omega$ is a bounded open set in $R^{n}$, n=2 or 3 with a $C^{\infty}$ boundary ${\partial}{\Omega}$. The control is achieved by means of a linear feedback law relating the body forces to the velocity and temperature field, i.e., $$f=-{\gamma}_1(u-U),\;\;{\tau}=-{\gamma}_2({\theta}-{\Theta}}$$ where (U,$\Theta$) are target velocity and temperature. We show that the unsteady solutions to Boussinesq equations are stabilizable by internal controllers with exponential decaying property. In order to compute (approximations to) solution, semi discrete-in-time and full space-time discrete approximations are also studied. We prove that the difference between the solution of the discrete problem and the target solution decay to zero exponentially for sufficiently small time step.

  • PDF