• Title/Summary/Keyword: stability functions

Search Result 912, Processing Time 0.046 seconds

STABILITY ANALYSIS FOR PREDATOR-PREY SYSTEMS

  • Shim, Seong-A
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.211-229
    • /
    • 2010
  • Various types of predator-prey systems are studied in terms of the stabilities of their steady-states. Necessary conditions for the existences of non-negative constant steady-states for those systems are obtained. The linearized stabilities of the non-negative constant steady-states for the predator-prey system with monotone response functions are analyzed. The predator-prey system with non-monotone response functions are also investigated for the linearized stabilities of the positive constant steady-states.

A study on the observer design of bilinear system via walsh function (WALSH 함수에 의한 쌍일차계의 관측자설계에 관한 연구)

  • 안두수;김종부
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.115-119
    • /
    • 1987
  • In this paper the observer design problem in bilinear systems is studied using the Walsh functions as approximating set of functions to find a finite series expansion of the state of bilinear system. A classical Liapnove method, to finding a class of observer feedback matrix, is applied to ensure uniform asymptotic stability of the observation error dynamics. An algorithm is derived for observer state eq. via Walsh function. The basic objective is to develop a computational algorithm for the determination of the coefficients in the expansion. This approach technique gives satisfactory result as well provides precise and effective method for the bilinear observer design problem.

  • PDF

ON STABILITY OF NONLINEAR NONAUTONOMOUS SYSTEMS BY LYAPUNOV'S DIRECT METHOD

  • Park, Jong-Yeoul;Phat, Vu-Ngoc;Jung, Il-Hyo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.805-821
    • /
    • 2000
  • The paper deals with asymtotic stabillity of nonlinear nonautinomous systems by Lyapunov's direct method. The proposed Lyapunov-like function V(t, x) needs not be continuous in t and Lipschitz in x in a Banach space. The class of systems considered is allowed to be nonautonomous and infinite-dimensional and we relax the boundedness, the Lipschitz assumption on the system and the definite decrescent condition on the Lyapunov function.

  • PDF

APPROXIMATE GENERALIZED EXPONENTIAL FUNCTIONS

  • Lee, Eun-Hwi
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.451-462
    • /
    • 2009
  • In this paper we prove the superstability of a generalized exponential functional equation $f(x+y)=a^{2xy-1}g(x)f(y)$. It is a generalization of the superstability theorem for the exponential functional equation proved by Baker. Also we investigate the stability of this functional equation in the following form : ${\frac{1}{1+{\delta}}}{\leq}{\frac{f(x+y)}{a^{2xy-1}g(x)f(y)}}{\leq}1+{\delta}$.

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

WEAK CONVERGENCE THEOREMS IN FEYNMAN'S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung Moo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.531-541
    • /
    • 2012
  • Feynman's operational calculus for noncommuting operators was studied by means of measures on the time inteval. And various stability theorems for Feynman's operational calculus were investigated. In this paper we see the time-dependent stability properties when the operator-valued functions take their values in a separable Hilbert space.

FEYNMAN′S OPERATIONAL CALCULI FOR TIME DEPENDENT NONCOMMUTING OPERATORS

  • Brian Jefferies
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.193-226
    • /
    • 2001
  • We study Feynman's Operational Calculus for operator-valued functions of time and for measures which are not necessarily probability measures; we also permit the presence of certain unbounded operators. further, we relate the disentangling map defined within the solutions of evolution equations and, finally, remark on the application of stability results to the present paper.

  • PDF

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

Approximation of the functional by neural network and its application to dynamic systems (신경회로망을 이용한 함수의 근사와 동적 시스템에의 응용)

  • 엄태덕;홍선기;김성우;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.313-318
    • /
    • 1994
  • It is well known that the neural network can be used as an universal approximater for functions and functionals. But these theoretical results are just an existence theorem and do not lead to decide the suitable network structure. This doubfulness whether a certain network can approximate a given function or not, brings about serious stability problems when it is used to identify a system. To overcome the stability problem, We suggest successive identification and control scheme with supervisory controller which always assures the identification process within a basin of attraction of one stable equilibrium point regardless of fittness of the network.

  • PDF

Controller Design for Affine T-S Fuzzy System with Parametric Uncertainties (파라미터 불확실성을 갖는 어핀 T-S 퍼지 시스템의 제어기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.133-136
    • /
    • 2004
  • This paper proposes a stability condition in affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF