• 제목/요약/키워드: stability evaluation

검색결과 2,803건 처리시간 0.039초

수치해석을 이용한 하천제방의 건전도 평가 (River Embankment Integrity Evaluation using Numerical Analysis)

  • 변요셉;정혁상;김진만;최봉혁;김경민;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.524-528
    • /
    • 2009
  • An influence factors for soundness evaluation of river levee include resistibility and embankment for piping of ground consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil, Accordingly, the stability investigation of embankment by application of literature data can affect stability evaluation results by change factors like a permeability coefficient, void ratio. It should be certainly used material properties by a test in soundness evaluation of river levee.

  • PDF

기하학적 형상 및 지형학적 특성을 중심으로 한 암반사면 안정성 평가항목의 유효성 평가 (Effectiveness Estimation of Rock Slope Stability Evaluation Items for Geometrical Configuration and Topographical Characteristic)

  • 이용희;김종열;이진수;강권수;김낙영
    • 한국지반환경공학회 논문집
    • /
    • 제9권5호
    • /
    • pp.61-69
    • /
    • 2008
  • 일반적으로 암반사면의 안정성을 평가하는 방법으로는 평사투영해석, 한계평형해석, 수치해석, 안정성 평가표에 의한 방법 등 여러 가지 방법이 이용되고 있다. 이 중 안정성 평가표에 의한 방법은 평가법의 제안기관이나 자국의 특성에 따라 그 평가항목이 상이하며, 또한 안정성 평가표상의 개개의 평가항목에 대한 연구는 미흡한 실정이다. 본 연구에서는 315개소의 고속도로 암반사면 분석자료를 이용하여 일반적으로 사용되고 있는 암반사면의 안정성 평가항목중 기하학적 형상(사면높이, 사면경사 및 경사방향, 주불연속면의 경사 및 경사방향, 사면과 주불연속면의 방향차이) 및 지형학적 특성(지형의 집수가능성, 상부자연사면 경사, 사면형상)에 대한 이상치(abnormal value) 분석을 통하여 암반사면 안정성 평가항목의 유효성을 평가하였다.

  • PDF

선삭가공에서 미세변위제어에 의한 채터진동의 안정성 판별에 관한 연구 (A Study on the Evaluation of Stability for Chatter Vibration by Micro Positioning Control in Turning Process)

  • 정의식;황준
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.49-54
    • /
    • 2004
  • In order to evaluate the stability of chatter vibration in turning precess, the micro-positioning cutting test with artificial tool vibration by piezoelectric actuation were carried out. In experiment, the phase lags between cutting forces and chip thickness variations were measured, and the dimensionless penetration-rate coefficient($\overline{K^*}$) which is the most important parameter on the stability for chatter vibration was calculated. The results show that$\overline{K^*}$ can be applicable to the stability criterion for regenerative chatter vibration.

중형 상용차량 ESC 평가를 위한 Sine with Dwell Test 제안 (Proposal for Using Sine with Dwell for the Evaluation of ESC for Medium Commercial Vehicles)

  • 권백순;이경수
    • 자동차안전학회지
    • /
    • 제7권2호
    • /
    • pp.32-38
    • /
    • 2015
  • A sine with dwell test is well known as a test scenario for evaluation of performance of electronic stability control(ESC) on passenger vehicles and heavy commercial vehicles. However, when it comes to ESC for medium commercial vehicles, the test scenario has not been established yet. In this paper, the sine with dwell test was modified considering characteristics of medium commercial vehicles. The three main modifications of the original test scenario are the steering angle level, steering frequency, and loading condition of the vehicle. These modifications are derived from simulation study for different medium commercial vehicles. From simulation study, it was shown that the ESC system for medium commercial vehicle is objectively evaluated by the proposed test scenario. A clear improvement on vehicle stability was seen in the results when ESC system was used.

주행 시뮬레이터를 이용한 차량 안정성 제어기의 성능 검증 (Evaluation of Vehicle Stability Control System Using Driving Simulator)

  • 정태영;이건복;이경수
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.139-145
    • /
    • 2004
  • This paper presents human-in-the-loop evaluations of vehicle stability control(VSC) system using a driving simulator. A driving simulator which contains full vehicle nonlinear model is evaluated by using actual vehicle test data on the same driving conditions. Braking control inputs for Vehicle Stability Control system have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. Closed-loop simulation results at realistic driving situations have shown that the proposed controller reduces driving effort of a driver and enhances stability of a vehicle.

골밀도 평가방법과 임플란트 안정성 변화의 관찰 (Observation of the change of the dental implant stability and bone density evaluation methods)

  • 고석민;박성재;김인수;송승일;이인경
    • Journal of Periodontal and Implant Science
    • /
    • 제39권2호
    • /
    • pp.185-192
    • /
    • 2009
  • Purpose: The aim of this study was to examine the correlation of the subjective and the objective evaluation of edentulous ridge bone quality, and to evaluate the change of the dental implant stability in each bone density group for early healing period after implant installation. Methods: Sixty-seven implants(Osstem implant$^{(R)}$, Seoul, Korea) were included in this study. We evaluated the bone density by 2 methods. The one was the subjective method which was determined by practitioner s tactile sense, the other was the objective bone type was based on Hounsfield units. The implant stability in each bone type group was assessed by resonance frequency analyzer(Osstell mentor$^{(R)}$). Data were analyzed for the change of the implant stability, and they were compared to verify the difference of groups at the time of installation, 2, 6, 10, 14 weeks postoperatively. Spearman's correlation was used to demonstrate the correlation between the subjective and the objective evaluation of the bone density, and analysis of variance(ANOVA) was used to analyze the differences of implant stability at each time point. Results: There was no close relation between the subjective and the objective evaluation of the bone density(r=0.57). In the subjective groups, there was statistically significant difference between the type 1 and 3 at 10 weeks and between the type 2 and 3 at 14 weeks. In the objective groups, there was no statistically significant difference between the D 1, 2, 3, 4, and 5 group with regard to RFA from baseline to 14 weeks(P>0.1). Conclusions: The implant stability increased over time during the study, and it was improved with bone density proportionally after 2weeks postoperatively. It is recommended that the decision of bone density is base on Hounsfield unit for implant loading time.

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

산림환경인자에 의한 임도 절토비탈면의 안정성 평가 (Stability Evaluation of Cut Slope in Forest Roads by Forest Environment Factors)

  • 전권석;오성윤;마호섭
    • 한국환경복원기술학회지
    • /
    • 제6권4호
    • /
    • pp.43-51
    • /
    • 2003
  • 임도의 절토비탈면의 각 조사구를 토양침식 및 붕괴발생의 발생 유무에 따라 안정구와 불안정구로 구분하고 절토비탈면의 안정에 영향을 미치는 인자를 도출하여 비탈면의 안정성을 평가한 결과는 다음과 같다. 1. 절토비탈면에서 발생한 토양침식량은 표고, 상부(사면위치), 볼록사면(凸), 사면경사, 비탈면길이, 사질식양토(SiL), 남쪽(South)사면과는 정의 상관을, 식생피복도, 평형사면(${\square}$), 미사질식양토(SiCL)와는 부의 상관관계를 보였다. 2. 절토비탈면의 안정성 판별에 대한 상대적 기여도는 식생피복도, 토양경도, 사면경사, 표고, 미사질양토, 볼록사면, 복합사면의 순으로 나타났다. 3. 절토비탈면에서 안정구(2)와 불안정구(1)의 중심값은 각각 -1.194와 1.127로 나타났으며, 이때 판별구분치는 -0.072이었다. 4. 절토비탈면 조사구의 불안정구와 안정구에 대한 판별능력의 적중율은 불안정구는 125개 중 117개가 판별됨으로서 93.6%의 적중율을, 안정구는 117개의 조사구 중 102개를 판별 시켜 87.2%의 적중율을 보였으며 두 그룹의 전체 판별능력은 90.4%였다.

주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구 (Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle)

  • 김철호;김창선;이승현
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

수제 설치에 의한 하도 안정성 평가 (Assessment of Channel Stability with Groynes)

  • 김기정;장창래;이경수
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.314-327
    • /
    • 2019
  • 본 연구에서는 본 연구에서는 2차원 수치모형을 적용하여 수제설치에 의한 흐름특성을 분석하고, 하도의 안정성을 평가할 수 있는 평가방법을 개발하였다. 2차원 수치모형의 결과는 관측자료와 1차원 모형의 결과와 비교하여, 그 적용성을 검토하였다. 평가 지표는 대상구간의 수리 및 지형학적 특성을 고려하여 하폭 대 수심의 비, 사행도, 하상경사, 하안 부근에서 유속, Shields number 등 5가지 항목으로 구성하였다. 낙동강의 달성보~강정고령보 구간의 수제 설치 전·후에 대해 평가지표를 적용하여 하도 안정성을 평가하였다. 평가 항목 중에서 하폭 대 수심의 비, 사행도, 하상경사는 하도의 안정성에 영향을 크게 주지 않는 것으로 평가되었다. 양안 부근에서 유속과 유사의 이동 특성을 결정하는 무차원 소류력인 Shields Number는 수제에 의하여 영향을 받으며, 수제의 수가 증가할수록 평가 값은 감소하고, 하안의 안정성은 증가하였다.