• Title/Summary/Keyword: stability equations

Search Result 1,364, Processing Time 0.031 seconds

Modeling of Force Components Acting on Quay Walls During Earthquakes (지진시 중력식 안벽에 작용하는 하중성분의 모델링)

  • 김성렬;권오순;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.107-121
    • /
    • 2003
  • When the seismic stability of quay walls is analyzed, the magnitudes of force components acting on quay walls during earthquakes and the phase relations among these force components must be properly evaluated. In general, force components include inertia force of the quay wall, lateral earth force, and water force. The magnitude and the phase relation of each force component vary according to the magnitude of the excess pore pressures developed in backfill soils of the quay wall. The dynamic thrust mobilized at the contact surface between the backfill soil and the wall develops as a result of the interactions among these force components. We propose a simple model to evaluate the magnitude and phase variation of the dynamic thrust on the back of the wall in terms of the excess pore pressure. The proposed model can predict the dynamic thrust by summing the magnitudes of farce components calculated from design equations for seismic pressures on the wall. The proposed model was verified by comparing its results with the results from a series of shaking table tests.

Robust Fuzzy Controller for Active Magnetic Bearing System with 6-DOF (6 자유도를 갖는 능동 자기베어링 시스템의 강인 퍼지 제어기)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • This paper propose the implementation of robust fuzzy controller for controlling an active magnetic bearing (AMB) system with 6 degree of freedom (DOF). A basic model with 6 DOF rotor dynamics and electromagnetic force equations for conical magnetic bearings is proposed. The developed model has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving this problem, we use the Takagi-Sugeno (T-S) fuzzy model which is suitable for designing fuzzy controller. The control object in the AMB system enables the rotor to rotate without any phsical contact by using magnetic force. In this paper, we analyze the nonlinearity of the active magnetic bearing system by using fuzzy control algorithm and desing the robust control algorithm for solving the parameter variation. Simulation results for AMB are demonstrated to visualize the feasibility of the proposed method.

A TCP-Friendly Congestion Control Scheme using Hybrid Approach for Enhancing Fairness of Real-Time Video (실시간 비디오 스트림의 공정성 개선를 위한 TCP 친화적 하이브리드 혼잡제어기법)

  • Kim, Hyun-Tae;Yang, Jong-Un;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.285-289
    • /
    • 2004
  • Recently, due to the high development of the internet, needs for multimedia streams such as digital audio and video is increasing much more. In case of transmitting multimedia streams using the User Datagram Protocol (UDP), it may cause starvation of TCP traffic on the same transmission path, thus resulting in congestion collapse and enormous delay because UDP does not perform TCP-like congestion control. Because of this problem, diverse researches are being conducted on new transmission schemes and protocols intended to efficiently reduce the transmission delay of real-time multimedia streams and perform congestion control. The TCP-friendly congestion control schemes can be classified into the window-based congestion control, which uses the general congestion window management function, and the rate-based congestion control, which dynamically adjusts transmission rate by using TCP modeling equations and the like. In this paper, we suggest the square-root congestion avoidance algorithm with the hybrid TCP-friendly congestion control scheme which the window-based and rate-based congestion controls are dealt with in a combined way. We apply the proposed algorithm to the existing TEAR. We simulate the performance of the proposed TEAR by using NS, and the result shows that it gives better improvement in the stability needed for providing congestion control than the existing TEAR.

Determination of Sesamin and Sesamolin in Sesame (Sesamum indicum L.) Seeds Using UV Spectrophotometer and HPLC

  • Kim, Kwan-Su;Lee, Jung-Ro;Lee, Joon-Seol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.95-100
    • /
    • 2006
  • Sesamin and sesamolin, antioxidant lipidsoluble lignan compounds, are abundant in sesame (Sesamum indicum L.) seed oil and provide oxidative stability of oil related to sesame quality. The sesamin and sesamolin contents of 403 sesame land races of Korea were determined by HPLC analysis of methanol extract (HPLC value), and their total lignan content was compared with those by using UV-Vis spectrophotometric analysis (UV method) of methanol (UV-MeOH value) and hexane (UV-Hexane value) extracts. HPLC values of total lignan content were strongly associated with UV-Hexane (r=0.705**) and UV-MeOH (r=0.811**) values. The UV values from both the extracts were 3.8-4.7 times higher than those of HPLC values. Lignan content was overestimated by UV method because total compounds in the mixture solution were quantified by absorbing at the same ultraviolet wavelength as in HPLC method. UV method could more rapidly analyze small amount of sample with higher sensitivity of detection than HPLC method. Average contents of lignans in sesame germplasm evaluated in this study were $2.09{\pm}1.02mg/g$ of sesamin, and $1.65{\pm}0.61mg/g$ of sesamolin, respectively, showing significant variation for lignan components. The results showed that UV method for the determination of sesamin and sesamolin could be practically used as a faster and easier method than HPLC by using the regression equations developed in this study.

Numerical Simulation on Tidal Currents in a Bay - Application to Gamag Bay - (만내의 조류수치해석 - 가막만을 중심으로 -)

  • Lee, Gwan-Su;Lee, Yeong-Seok;Lee, Sam-No
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.41-48
    • /
    • 1991
  • This paper describes the characteristics of tidal currents in the Gamag Bay by using the two-dimensional nonlinear hydrodynamic euation. The basic equations are derived by Navier-Stokes momentum equation and continuity equation and its characteristics critically are reviewed, and they are analysed by the implicit finite difference method. The numerical model is constructed two-dimensional(depth-averaged) simple layer model. This paper investigates the stability of solution and convergence of solution in application of the method to Gamag Bay, and the reproducibility of the simulation is also discussed in comparison with the results of field survey. The following items are clarifide through the numerical investigation; i)the reproduc-ibility of tidal range and currents are quite acceptable, comparing with the results of model tests and field data, and ii) tidal cycle for convergent solution is four tidal cycle, also, iii) bottom friction is successfully represented as c=(1/n))$h^{1/6}$.

  • PDF

Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations

  • Refrafi, Salah;Bousahla, Abdelmoumen Anis;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.311-325
    • /
    • 2020
  • In this research work, the hygrothermal and mechanical buckling responses of simply supported FG sandwich plate seated on Winkler-Pasternak elastic foundation are investigated using a novel shear deformation theory. The current model take into consideration the shear deformation effects and ensures the zero shear stresses on the free surfaces of the FG-sandwich plate without requiring the correction factors "Ks". The material properties of the faces sheets of the FG-sandwich plate are assumed varies as power law function "P-FGM" and the core is isotropic (purely ceramic). From the virtual work principle, the stability equations are deduced and resolved via Navier model. The hygrothermal effects are considered varies as a nonlinear, linear and uniform distribution across the thickness of the FG-sandwich plate. To check and confirm the accuracy of the current model, a several comparison has been made with other models found in the literature. The effects the temperature, moisture concentration, parameters of elastic foundation, side-to-thickness ratio, aspect ratio and the inhomogeneity parameter on the critical buckling of FG sandwich plates are also investigated.

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect

  • Chaht, Fouzia Larbi;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Beg, O. Anwar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.425-442
    • /
    • 2015
  • This paper addresses theoretically the bending and buckling behaviors of size-dependent nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all displacements through the thickness without using shear correction factor. The material properties of FGM nanobeams are assumed to vary through the thickness according to a power law. The governing equations and the related boundary conditions are derived using the principal of minimum total potential energy. A Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and stability responses of the FGM nanobeam are discussed in detail. The study is relevant to nanotechnology deployment in for example aircraft structures.

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.

Determination of Ship Collision Avoidance Path using Deep Deterministic Policy Gradient Algorithm (심층 결정론적 정책 경사법을 이용한 선박 충돌 회피 경로 결정)

  • Kim, Dong-Ham;Lee, Sung-Uk;Nam, Jong-Ho;Furukawa, Yoshitaka
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.58-65
    • /
    • 2019
  • The stability, reliability and efficiency of a smart ship are important issues as the interest in an autonomous ship has recently been high. An automatic collision avoidance system is an essential function of an autonomous ship. This system detects the possibility of collision and automatically takes avoidance actions in consideration of economy and safety. In order to construct an automatic collision avoidance system using reinforcement learning, in this work, the sequential decision problem of ship collision is mathematically formulated through a Markov Decision Process (MDP). A reinforcement learning environment is constructed based on the ship maneuvering equations, and then the three key components (state, action, and reward) of MDP are defined. The state uses parameters of the relationship between own-ship and target-ship, the action is the vertical distance away from the target course, and the reward is defined as a function considering safety and economics. In order to solve the sequential decision problem, the Deep Deterministic Policy Gradient (DDPG) algorithm which can express continuous action space and search an optimal action policy is utilized. The collision avoidance system is then tested assuming the $90^{\circ}$intersection encounter situation and yields a satisfactory result.