• 제목/요약/키워드: stability characteristics

검색결과 5,979건 처리시간 0.038초

허리의 분절적 가동기법이 만성 허리통증 환자의 근육 특성과 안정성 한계에 미치는 영향 (The Effect of the Lumbar Segmental Mobilization Technique on Chronic Low Back Pain Patients' the Characteristics of the Muscles, and Limited of Stability)

  • 양대중;엄요한
    • 대한통합의학회지
    • /
    • 제8권4호
    • /
    • pp.191-202
    • /
    • 2020
  • Purpose : The purpose of this study is to examine the effect of the segmental mobilization technique of the lower back on the characteristics of the muscles and limited of stability of chronic backache patients. Methods : The subjects of the study were 30 chronic back pain patients who were divided into groups of 15, a manual therapy group (Group I) and a spinal decompression therapy group (Group II), via random assignation. The subjects had 15 minutes of superficial heat therapy, 15 minutes of interference wave therapy, and 5 minutes of ultrasound therapy for conservative physical therapy. Additionally, manual therapy and spinal decompression therapy were administered to each group for 30 minutes, 5 times a week for 8 weeks. Before intervention, the characteristics of the muscles and limited of stability of the muscles were analyzed. After 8 weeks of intervention, the above items were re-measured in the same manner and analyzed between groups. Results : The results of comparative analysis of the characteristics of the muscles and limited of stability between groups showed that there were statistically significant differences. The manual therapy group (Group I) showed significant differences in characteristics of the muscles compared to the spinal decompression therapy group (Group II). The manual therapy group (Group I) showed significant differences in limited of stability compared to the spinal decompression therapy group (Group II). Conclusion : The result confirmed that manual therapy was more effective in the characteristics of the muscles and limited of stability. Based on this study, additional studies are necessary on the effect of various techniques of manual therapy on muscle activity and muscle thickness in chronic back pain patients. In order to develop an effective manual therapy program, studies using a variety of evaluations are needed.

ZPCCY계 바리스터 세라믹스의 DC 가속열화 특성에 미치는 냉각속도의 영향 (Effect of Cooling Rate on DC Accelerated Aging Characteristics of ZPCCY-Based Varistor Ceramics)

  • 남춘우;김향숙
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.776-782
    • /
    • 2002
  • The microstructure, V-Ι characteristics, and stability of ZnO-P $r_{6}$ $O_{11}$ CoO-C $r_2$ $O_3$- $Y_2$ $O_3$-based varistor ceramics were investigated with cooling rate in the range of 2~8$^{\circ}C$/min. The cooling rate relatively weakly affected the microstructure, the varistor voltage, and the leakage current in the V-Ι characteristics. But the nonlinear exponent relatively strongly affected by cooling rate. The cooling rate also greatly affected the stability of V-Ιand dielectric characteristics for DC accelerated aging stress. On the whole, the varistors cooled with 4$^{\circ}C$/fin exhibited the highest performance in the densification, nonlinearity, and stability. Especially, they exhibited a high stability, in which the variation rate of the varistor voltage( $V_{1㎃}$), the nonlinear exponent($\alpha$), and the dissipation factor(tan $\delta$) is -1.4%, -4.9%, and +60.0%, respectively, under DC accelerated aging stress such as 0.95 $V_{1㎃}$15$0^{\circ}C$/12 h)

적외선 탐색 및 추적장비의 동적 특성 및 안정화 (Dynamic Characteristics and Stability of an Infrared Search and Track)

  • 최종호;박용찬;이주형;최영수
    • 한국군사과학기술학회지
    • /
    • 제11권2호
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구 (A study on the stabilization characteristics of the diffusion flame formed behind a bluff body)

  • 안진근;배윤영
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

베어링의 동기 진동이 외부 가압 공기 저어널 베어링의 안정성에 미치는 영향 (Efffects of Synchronous Vibration of Bearing on Stability of Externally Pressurized Air Journal Bearing)

  • 이정재;김경웅
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.28-33
    • /
    • 1997
  • Results of theoretical investigations of the stability characteristics of externally pressurized air journal bearing, of which bearing is synchronously vibrate with respect to rotor, are presented. Linearized perturbation method is used to get the dynamic coefficients of air bearing, and the Routh-Hurwitz criterion is used to obtain stability map. The stability characteristics operating at zero steady-state eccentricity is investigated of various phase difference of bearing to rotor. It is shown that stability of air bearing is greatly influenced by synchronous motion of bearing, there exists optimum phase difference which gives maximum stability threshold.

결혼생활의 질과 안정성 : 이론적 모델의 검증 (Marital Quality and Stability : A Theoretical Model)

  • 김영희
    • 대한가정학회지
    • /
    • 제37권6호
    • /
    • pp.77-96
    • /
    • 1999
  • The purpose of this study was to examine the effect of family-of-origin, personal and spousal characteristics, mediated by communication and problem-solving behavior, on marital quality and stability. On the basis of previous literature, the theoretical model was specified, estimated, and evaluated for adequacy of statistical fit for samples of 214 married women. Although the initial model was not supported by data, the revised model fitted the data adequately. Results of structural equation modeling indicated family-of-origin and communication behavior directly affected marital quality. However, the personal and spousal characteristics were linked with marital quality and stability only if they were mediated by communication and problemsolving behavior. Communication behavior was strongly related to marital quality and stability both directly and indirectly through problem-solving behavior. The model also showed marital quality can be an antecedent variable for marital stability. The findings of results is to generate more broad-minded thinking about how communication behavior, marital quality, and marital stability are interrelated.

  • PDF

초공동 수중운동체의 설계 제약조건에 관한 연구 (A Study on Design Constraints of a Supercavitating Underwater Vehicle)

  • 김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.54-61
    • /
    • 2016
  • This paper defines the design constraint in consideration of the dynamic characteristics and stability in the longitudinal direction of a supercavitating vehicle. Available range of the design variables is calculated by numerical simulation and the cavity modeling of vehicle dynamics is performed first. Configuration parameters of the supercavitating vehicle to determine the vehicle dynamics and characteristics of the cavity are defined as design variables. Design constraints are supercavitation, trim velocity, stability and vehicle dynamics in transition phase. Numerical results show that in accordance with the change of the design variables, the proposed design constraints reflect the physical characteristics of the supercavitating vehicle. This research finds the design region where the constraints of supercavity and the trim velocity are satisfied, and the stability analysis refines the design results by excluding the region where the stability is not guaranteed. The stability analysis is particularly important for a vehicle with the short fin span.

미기상 특성에 따른 대기오염 농도분포에 관한 연구 (A Study on the Distribution of Air Pollutant Concentration According to Micrometeorological Characteristics)

  • 김유근;홍정혜;전병일
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.31-38
    • /
    • 1994
  • The diffusion of the pollutants released into atmosphere is dependent on its chemical reaction, topography and micrometeorological characteristics. The purpose of the study is to investigate how much micrometeorological characteristics such as stability, wind speed and mixing height affect the diffusion of the air pollutants. For this purpose, this paper let 1) the basic theory be K-theory, 2) eddy diffusivity and wind speed be dependent on mixing height and stability, and 3) Grout method be used for numeric calculation. The result was 1) the more unstable condition, the higher mixing height and the higher wind speed we, the lower pollutants concentration appears, 2) the most intensive effect on the distribution of the pollutant concentration is the atmospheric stability.

  • PDF

히스테리시스 특성을 고려한 자계의 유한 요소 해석 (gnetic Fields With Hysteresis Characteristics)

  • 정훈;홍선기;원종수
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.1033-1047
    • /
    • 1989
  • A finite element method for the analysis of magnetic fields with hysteresis characteristics is proposed. The method employs Preisach model to describe hysteresis of magnetic material, so that even multi-branch or minor-loop characteristics can be taken into account. The problem can be considered as the analysis of a nonlinear equation where magnetization depends not only on the present value of the magnetic field but also on the past values, and the problem can be solved by the iteration method. Measurements were carried out on soft ferrite EI core for the comparison with computer solution, and good agreements were obtained. is investigated. A theoretical approach to gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects fo the stride length on static stability are analyzed and the relations between static stability and initial body configurations are examined. It is shown that the moving velocity can be increased to some extent without affecting stability margins for a given initial body configuration. Computer simulations are performed to verify the analysis.

  • PDF

현가특성 변화에 따른 도시형 전동차의 임계속도 선형해석 (Linear Analysis of the Critical Speed for an Urban Railway Vehicle according to the Change of Suspension Characteristics)

  • 박준혁;허현무;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.251-257
    • /
    • 2007
  • This paper describes the variation of the critical speed of an urban railway vehicle according to the change of suspension characteristics. Suspensions of a railway vehicle are composed of primary and secondary suspensions. Generally, main focus of the stability analysis has been the primary suspension. However, secondary suspension has large effects on the stability as well as the ride quality of a vehicle. In this paper, stability of an urban railway vehicle is discussed in relation to the variation of characteristics of both primary and secondary suspension. For this, modal analysis is carried out using a linear dynamic model of a half vehicle and a polynomial fit for Kalker's creep coefficients. Stability along with change of the effective conicity of a wheel is also investigated.

  • PDF