• Title/Summary/Keyword: square root time

Search Result 696, Processing Time 0.03 seconds

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

The dynamic response of the FGM coated half-plane with hysteretic damping under time harmonic loading

  • Xiao-Min Wang;Liao-Liang Ke;Yue-Sheng Wang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.95-106
    • /
    • 2023
  • This paper investigates the dynamic response of a functionally graded material (FGM) coated half-plane excited by distributed time harmonic loading. Three types of typical distributed surface loads, including uniform load, Hertz load, and square-root singular load, are considered. The mass density and elastic modulus of the FGM coating are supposed to be described by the exponential function. The material damping is modelled by a linearly hysteretic damping which is expressed by a complex modulus in the time harmonic motion. Using Fourier integral transform technique and numerical integral method, the effects of the excitation frequency, gradient index, damping, and load type on the dynamic stresses and displacements are discussed.

A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data (EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구)

  • Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.57-67
    • /
    • 2024
  • This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.

Methods of constructing optimal topology to improve performance of STP (STP의 성능 향상을 위한 최적의 토폴로지 구성방법)

  • Park, Sung-Han;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.123-126
    • /
    • 2005
  • STP gets to have different network performance, depending on the configuration method of topology. Accordingly, for efficient network environment, it is necessary to make the optimum topology. This paper proposed a way to make the optimum topology for construction of efficient network among switches on ethernet: the optimum topology was made by calculating the time the switches in the same domain receive the frame transmitted from the root switch, using a mathematical model. And it analyzed the performance of the topology depending on the location of the root switch. As a result of analyzing the performance, this study came to the conclusion that it would be effective to locate the root switch in the center of the square network.

  • PDF

Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method (LH-OAT 민감도 분석과 SCE-UA 최적화 방법을 이용한 SWAT 모형의 자동보정)

  • Lee Do-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.677-690
    • /
    • 2006
  • The LH-OAT (Latin Hypercube One factor At a Time) method for sensitivity analysis and SCE-UA (Shuffled Complex Evolution at University of Arizona) optimization method were applied for the automatic calibration of SWAT model in Bocheong-cheon watershed. The LH-OAT method which combines the advantages of global and local sensitivity analysis effectively identified the sensitivity ranking for the parameters of SWAT model over feasible parameter space. Use of this information allows us to select the calibrated parameters for the automatic calibration process. The performance of the automatic calibration of SWAT model using SCE-UA method depends on the length of calibration period, the number of calibrated parameters, and the selection of statistical error criteria. The performance of SWAT model in terms of RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), and NMSE (Normalized Mean Square Error) becomes better as the calibration period and the number of parameters defined in the automatic calibration process increase. However, NAE (Normalized Average Error) and SDR (Standard Deviation Ratio) were not improved although the calibration period and the number of calibrated parameters are increased. The result suggests that there are complex interactions among the calibration data, the calibrated parameters, and the model error criteria and a need for further study to understand these complex interactions at various representative watersheds.

A turbo code with reduced decoding delay (감소된 복호지연을 갖는 Turbo Code)

  • 김준범;문태현;임승주;주판유;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1427-1436
    • /
    • 1997
  • Turbo codes, decoded through an iterative decoding algorithm, habe recently been shown to yidel remarkable coding gains close to theoretical limits in the Gaussian channel environment. This thesis presents the performance of Turbo code through the computer simulation. The performance of modified Turbo code is compared to that of the conventional Turbo codes. The modified Turbo code reduces the time delay in decoding with minimal effect to the performance for voice transmission sytems. To achieve the same performance, random interleaver the size of which is no less than the square root of the original one should be used. Also, the modified Turbo code is applied to MC-CDMA system, and its performance is analyzed under the Rayleigh Fading channel environment. In Rayleigh fading channel environment, due to the amplitude distortion caused by fading, the interleaver of the size twice no less than that in the Gaussian channel enironment was required. In overall, the modified Turbo code maintained the performance of the conventional Turbo code while the time delay in transmission and decoding was reduced at the rate of multiples of two times the squared root of the interleaver size.

  • PDF

A Mathematical Model for Color Changes in Red Pepper during Far Infrared Drying

  • Ning, XiaoFeng;Han, ChungSu;Li, He
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.327-334
    • /
    • 2012
  • Purpose: The color changes in red pepper during far infrared drying were studied in order to establish a color change model. Methods: The far infrared drying experiments of red pepper were conducted at two temperature levels of 60, $70^{\circ}C$ and two air velocity levels of 0.6 and 0.8 m/s. The results were compared with the hot-air drying method. The surface color changes parameters of red pepper were measured qualitatively based on L (lightness), a (redness), b (yellowness) and total color changes (${\Delta}E$). The goodness of fit of model was estimated using the coefficient of determination ($R^2$), the root mean square error (RMSE), the mean relative percent error (P) and the reduced chi-square (${\chi}^2$). Results: The results show that an increase in drying temperature and air velocity resulted in a decrease in drying time, the values of L (lightness) and a (redness) decreased with drying time during far infrared drying. The developed model showed higher $R^2$ values and lower RMSE, P and ${\chi}^2$ values. Conclusions: The model in this study could be beneficial to describe the color changes of red pepper by far infrared drying.

Light-emitting diode assessment of dentinal defects: the role of presumed extraction forces

  • Coelho, Marcelo Santos;Card, Steven J.;Tawil, Peter Z.
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.232-239
    • /
    • 2017
  • Objectives: The evaluation of iatrogenic dentinal defects in extracted teeth may be influenced by extraction forces and prolonged dry times. The purpose of this study was to compare the presence of dentinal defects in freshly extracted, periodontally compromised teeth with those in a group of teeth with uncontrolled extraction forces and storage time. Materials and Methods: The experimental group consisted of eighteen roots obtained from teeth extracted due to periodontal reasons with class II or III mobility. They were kept in saline and sectioned within 1 hour following extraction. The control group consisted of matched root types obtained from an anonymous tooth collection, consistent with previous dentinal defect studies. The slices were obtained at 3, 6, and 9 mm from the apex. The imaging process exposed all specimens to no more than 60 seconds of dry time. The ${\times}12.8$ magnification was used for the 9 mm slices and ${\times}19.2$ magnification for the 3 mm and 6 mm slices under light-emitting diode (LED) transillumination. The root canal spaces and periodontal tissues were masked to minimize extraneous factors that might influence the evaluators. Chi-square test was used for statistical analysis. Results: Dentinal defects were detected in 17% of the experimental group teeth, compared to 61% of control teeth (p = 0.015). Conclusions: LED transillumination assessment of freshly extracted roots with class II or III mobility showed smaller number of dentinal defects than roots with uncontrolled storage time and extraction forces. The use of freshly extracted roots with mobility should be considered for future dental defect assessment studies.

Uncertainty Analysis for the Multi-path Ultrasonic Flowmeter UR- 1000 with Dry Calibration (간접 교정에 의한 다회선 초음파유량계 UR-1000 불확도 분석)

  • Hwang, Shang-Yoon;Park, Sung-Ha;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.378-386
    • /
    • 2002
  • Multi-path ultrasonic Sow measurement system uncertainty is determined by assigning an expected error of each component of flow measurement and then defining the total flow measurement uncertainty as square root of the sum of squared values of the individual error. Sources of uncertainty for flow measurement are geometry, transit time and velocity profile integration uncertainty. A theoretical uncertainty model for multi-path ultrasonic transit time flowmeter configured with parallel 5 chords, is derived from and calculated by dry calibration method.

  • PDF

TDDB Analysis and Electrical Characteristics of Thin Insulator Films (얇은 절연막의 TDDB 분석과 전기적 특성)

  • Park, Chanwon;Kim, Bokheon
    • Journal of Industrial Technology
    • /
    • v.8
    • /
    • pp.23-30
    • /
    • 1988
  • In this paper, the characteristics of electrical breakdown and TDDR (Time Dependant Dielectric Breakdown) were studied to evaluate stability and reliability of thin insulator films such as oxide and nitride. As the oxide film thickness decreased, the electrical breakdown field was increased proportioning to its reverse square root, ${d^{-\frac{1}{2}}}$. As for the temperature dependance of breakdown field, its field was inclined to decrease as temperature increased. It also showed that oxide charge (Qss) was changed by stress field and stress time. Consequently, TDDB characteristics and breakdown mechanism proved the improvement of reliability and stability and provided the accurate analysis to predict a device life time.

  • PDF