• Title/Summary/Keyword: square cylinders

Search Result 61, Processing Time 0.026 seconds

Comparison of gap flows between tandem cylinders having circular and square sections (원형 및 사각형 단면 형상을 가진 tandem 실린더의 gap flow 유동현상 규명에 관한 연구)

  • Jung, Sung Yong;Park, Hanwook
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2020
  • Problems related with flows around structures are typical in various engineering fields. The characteristics of these flow structures depend strongly on the shape of the body. The flow regime around square cylinders which are also employed in various applications has also been investigated. In addition to a single body, flows past closely spaced structures arranged in tandem are observed in numerous practical applications. In this study, the flow characteristics around the circular and the square cylinder were investigated according to S/D. The velocity fields and Reynolds stress of the single cylinders were acquired to explain the flow behaviors between tandem cylinders. The differences observed in the flow behaviors of square and circular cylinders were studied. The flow patterns around two tandem cylinders can be classified into three types of wake interference behaviors according to S/D. This is related with the flows between cylinders.

Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

  • Liu, Mingyue;Xiao, Longfei;Yang, Lijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.906-919
    • /
    • 2015
  • The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around ${\alpha}=15^{\circ}$. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

TRANSITION IN THE FLOW PAST SIDE-BY-SIDE SQUARE CYLINDERS (수직방향으로 정렬된 정사각주 후류에서의 3차원 불안정성)

  • Choi, C.B.;Jang, Y.J.;Yoon, D.H.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.62-70
    • /
    • 2010
  • Secondary instability in the flow past two square cylinders in side-by-side arrangements is numerically studied by using a Floquet analysis. The distance between the neighboring faces of the two cylinders (G) is the key parameter which affects the secondary instability under consideration. In this paper, we present the critical Reynolds number for the secondary instability and the corresponding spanwise wave number of the most unstable (or least stable) wave for each G. Our results would shed light on a complete understanding of the onset of secondary instability in the presence of two side-by-side square cylinders.

A Numerical Study of Natural Convection in a Square Enclosure with two Hot Circular Cylinders (두 개의 뜨거운 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Park, Seong-Hyun;Park, Yong-Gap;Ha, Man-Yeong;Yoon, Hyun-Sik;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-255
    • /
    • 2012
  • Numerical calculations are carried out for the natural convection in a square enclosure with two hot cylinders induced by temperature difference between a cold outer rectangular cylinder and two hot circular cylinders. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model two inner circular cylinders based on finite volume method, for different Rayleigh numbers varying over the range of $10^3$ to $10^5$. The study goes further to investigate the effect of the location of two cylinders on the heat transfer and fluid flow. The location of inner circular cylinders is changed vertically along the center-line of square enclosure. The changes of heat transfer quantities have been presented.

Investigation Into Aeolian Tone Noise by Twin Tandem Square Cylinders in duct Using Lattice Boltzmann Method (격자 볼츠만 방법을 이용한 덕트 내 쌍둥이 직렬배열 사각 실린더에 의한 Aeolian 순음소음 고찰)

  • Lee, Songjune;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.962-968
    • /
    • 2014
  • The lattice Boltzmann method(LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics since the end of the 90's. In these days, its intrinsic unsteadiness and rapid increase in computing power make the LBM be more applicable for computing flow-induced noise as well as fluid dynamics. The lattice Boltzmann method is a weakly compressible scheme, so we can get information about both aerodynamics and aeroacoustics from single simulation. In this paper, numerical analysis on Aeolian tone noise generated by tandem-twin square cylinders in duct is performed using the LBM. For simplicity, laminar two-dimensional fluid models are used. To verify the validity and accuracy of the current numerical techniques, numerical results for the laminar duct and the cylinder flows are compared with the analytical solution and the measurement, respectively. Then, aerodynamic noise of the twin tandem square cylinders is investigated. It is shown that the aerodynamic noise from the twin tandem square cylinders can be reduced by controlling the distance between the cylinders.

Analysis of the wind loading of square cylinders using covariance proper transformation

  • de Grenet, Enrico T.;Ricciardelli, Francesco
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.71-88
    • /
    • 2004
  • In this paper the capacity of Covariance Proper Transformation (CPT) analyses to provide information about the wind loading mechanisms of bluff bodies is investigated through the application to square cylinders. CPT is applied to the fluctuating pressure distributions on a single cylinder, as well as on a pair of cylinders in the tandem and side by side arrangements, with different separations. Both smooth and turbulent flow conditions are considered. First, through the analysis of the contributions of each CPT mode to the total fluctuating aerodynamic forces, a correspondence between modes and aerodynamic components is sought, which is then verified through examination of the mode shapes. When a correspondence between modes and aerodynamic components is found, an attempt is made to separate the different frequency contributions to the aerodynamic forces, provided by each mode. From the analyses it emerges that (a) in most cases each mode is associated to one single force component, that (b) retaining a limited number of modes allows reproducing the aerodynamic forces with a rather good accuracy, and that (c) each mode is mainly associated with one frequency of excitation.

A Study on Characteristics of the Flow Around Two Square Cylinders in a Tandem Arrangement Using Particle Image Velocimetry (PIV를 이용한 직렬배열에서의 두 정사각기둥 주위의 유동특성에 관한 연구)

  • Kim, Dong-Keon;Lee, Jong-Min;Seong, Seung-Hak;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1199-1208
    • /
    • 2005
  • The flow fields including velocities, turbulence intensities, Reynolds shear stress and turbulent kinetic energy were investigated using particle image velocimetry(PIV) to study the flow characteristics around two square cylinders in a tandem arrangement. The experiments were carried out in the range of the spacing from 1.0 to 4.0 widths of cylinder, Reynolds number of 5.3$\times$10$^{3}$ and 1.6$\times$10$^{4}$ respectively. Discontinuous jumping at the drag coefficient variation was found for two cylinders simultaneously when the spacing between two cylinders is varied. This phenomenon is attributed to a sudden change of the flow pattern which depends on the reattachment of the shear layer separated from the upstream cylinder. Near such a critical spacing, the changes of the flow fields as well as the effect of Reynolds number were studied in detail.

Experimental study of cactus-like body shape on flow-induced vibration mitigation of clustered cylinders

  • Shi, Chen;Liu, Yang;Wang, Jialu;Chen, Fabo;Liu, Zhihui;Bao, Xingxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.194-207
    • /
    • 2021
  • Vortex-Induced Vibration (VIV) is a major contributor to the fatigue damage of marine risers which are often arranged in an array configuration. In addition to helical strakes and fairings, studies have been strived in searching for possible VIV suppression techniques. Inspired by giant Saguaro Cacti, flexible cylinders of different cactus-shaped cross sections were tested in a water tunnel facility, and test results showed that cactus-like body shapes reduced VIV responses of a cylinder at no cost of significant increase of drag. A series of experiments were conducted on a pair of two tandem-arranged flexible cylinders and an array of four cylinders in a square configuration to investigate the effects of wake on the dynamic responses of cylinders and the VIV mitigation effectiveness of the cactus-like body shape. Results showed that the cylinders in a square configuration, either at the upstream or downstream positions, might have larger dynamic responses than those of a single cylinder. The cactus-like body shape could mitigate VIV responses of cylinders at upstream positions in an array configuration; however, similar to helical strakes, the mitigation efficiency was reduced on downstream cylinders. Note that the cactus-like cross-sectional shape investigated was not optimized for VIV suppression. The present study indicates that the modification of the cross-sectional shape of a cylinder to a well-designed cactus-like shape may be used as an alternative technique to mitigate the VIV of marine risers.

Design of Broadband Electromagnetic Wave Absorber with Square Ferrite Cylinders in the Second Layer (초광대역특성을 갖는 정방형 페라이트 기둥구조의 전파흡수체 설계법)

  • 김동일;전상엽;이창우;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 1995
  • A wide band design method of an electromagnetic wave absorber with square ferrite cylinders in the second layer, which has very wide band frequency characteristics, is proposed and discussed. A theoretical model using the equivalent material constants method is also evaluated and proposed for its accuracy by comparison with Hashin-Shtrikman formulas. Based on the developed model, wide band electromagnetic wave absorbers with excellent reflective frequency characteristics in the frequency range of 30MHz to 3, 690MHz were designed.

  • PDF

Forces and flow around three side-by-side square cylinders

  • Zheng, Qinmin;Alam, Md. Mahbub;Rehman, S.;Maiti, D.K.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • A numerical investigation on forces and flow around three square cylinders in side-by-side arrangement is conducted at a Reynolds number Re = 150 with the cylinder center-to-center spacing ratio L/W = 1.1 ~ 9.0, where W is the cylinder side width. The flowat this Re is assumed to be two-dimensional, incompressible, and Newtonian. The flow simulation is conducted by using ANSYS-Fluent. The flow around the three side-by-side cylinders entails some novel flow physics, involving the interaction between the gap and free-stream side flows as well as that between the two gap flows. An increase in L/W from 1.1 to 9.0 leads to five distinct flow regimes, viz., base-bleed flow (L/W < 1.4), flip-flopping flow (1.4 < L/W < 2.1), symmetrically biased beat flow (2.1 < L/W < 2.6), non-biased beat flow (2.6 < L/W < 7.25) and weak interaction flow (7.25 < L/W < 9.0). The gap flow behaviors, time-averaged and fluctuating fluid forces, time-averaged pressure, recirculation bubble, formation length, and wake width in each flow regime are discussed in detail.