• Title/Summary/Keyword: sprung mass

Search Result 56, Processing Time 0.025 seconds

A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms (유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구)

  • 백운태;성활경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure (타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

Design and Control of a MR Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

A Fuzzy Skyhook Algorithm Using Piecewise Linear Inverse Model

  • Cho Jeong-Mok;Yoo Bong-Soo;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.190-196
    • /
    • 2006
  • In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model has been constructed by using piecewise linear damping force model. In this paper, the fuzzy logic control based on heuristic knowledge is combined with the skyhook control. And it is simulated for a quarter car model. The acceleration of the sprung mass is included in the premise part of the fuzzy rules to reduce the vertical acceleration RMS value of the sprung mass. Then scaling factors and membership functions are tuned using genetic algorithm to obtain optimal performance.

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.

Performance Analysis with Different Tire Pressure of Quarter-vehicle System Featuring MR Damper (MR 댐퍼를 장착한 1/4차량의 타이어 공기압에 따른 성능분석)

  • Sung, Kum-Gil;Lee, Ho-Guen;Choi, Seung-Bok;Park, Min-Kyu;Park, Myung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.249-256
    • /
    • 2010
  • This paper presents performance analysis of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, MR damper is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR damper, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS and weighted RMS of sprung mass are evaluated under various road conditions.

A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance (차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

Control of Active Suspension System Considering Wheel-Hop (차륜 진동을 고려한 능동 현가계 제어)

  • 이동락;한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.420-424
    • /
    • 1994
  • In this paper, an active suspension system considering the wheel hop is studied for a quarter car model. A LQ controller controls an active suspension system in which a vibration absorber is attached to the wheel axis. The vibration absorber is adopted to reduce the vibration near the natural frequency of the unsprung mass, and the LQ controller is used to control the vibration near the natural frequency of the sprung mass. The perfomance of the control system considering the wheel hop is compared with that of a LQ control system.

  • PDF