• 제목/요약/키워드: sprung mass

검색결과 56건 처리시간 0.033초

선회 시 차량의 외측전륜 스프링 상질량의 저주파 진동 (Low Frequency Vibration of the Sprung Mass on Front Outer Wheel in Cornering)

  • 이병림;이재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1889-1893
    • /
    • 2000
  • During the test drive of developing vehicle, a low frequency vibration of sprung mass on front outer wheel has been frequently observed in cornering with some speed. The purpose of this paper is to investigate the low frequency vibration of the sprung mass. The analysis result shows that the low frequency vibration is caused by sudden migration of the center of gravity of vihicle and it is determined by geometric points of suspension.

  • PDF

다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석 (Stability and frequency response analysis of multipurpose vehicle using linear vehicle model)

  • 김병기;임원식
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계 (Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter)

  • 최영휴;이창조;홍대선
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

이동질량을 고려한 단순지지된 교량의 진동수 및 공진현상 분석 (The Effect of Moving Mass on Resonance Phenomenon and Natural Frequency of a Simply Supported Beam)

  • 민동주;정명락;박성민;김문영
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.27-38
    • /
    • 2016
  • The purpose of this study is to investigate the influence of moving mass on the vibration characteristics and the dynamic response of the simply supported beam. The three types of the moving mass(moving load, unsprung mass, and sprung mass) are applied to the vehicle-bridge interaction analysis. The numerical analyses are then conducted to evaluate the effect of the mass, spring and damper properties of the moving mass on natural frequencies and dynamic responses of the simply supported beam. Particularly, in the case of the sprung mass, variations of the natural frequency of simply supported beam are explored depending on the position of the moving mass and the frequency ratio of the moving mass and the beam. Finally the parametric studies on the resonance phenomena are performed with changing mass, spring and damper parameters through the dynamic interaction analyses.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

고속 안정성을 고려한 쇽업소버 최적 설계 (Optimal Design of Shock Absorber using High Speed Stability)

  • 이광기;모종운;양욱진
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

실 주행열차의 윤중변동에 대한 정량적 분석 (A Quantitative analysis about Wheel Load Variations)

  • 김현민;오지택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.728-732
    • /
    • 2004
  • The purpose of this study is to examine wheel load variations on the bridge. It had been reported that wheel load variations involved un-sprung mass, sprung mass and train running speed, but there are no examples that measured in the running speed actuality track. In this experiment, Attach measurement sensor to equal distance on the track and measured wheel loads by using a dynamic shear strain technique.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF

승용차용 반능동 현가시스템의 제어 (Control of Semi-active Suspensions for Passenger Cars(I))

  • 조영완;이경수
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험 (Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF