• Title/Summary/Keyword: sprout

Search Result 798, Processing Time 0.037 seconds

Changes of nutritional constituents and antioxidant activities by the growth periods of produced ginseng sprouts in plant factory (식물공장에서 생산된 새싹인삼의 생육 시기에 따른 영양성분 및 항산화 활성 변화)

  • Seong, Jin A;Lee, Hee Yul;Kim, Su Cheol;Cho, Du Yong;Jung, Jea Gack;Kim, Min Ju;Lee, Ae Ryeon;Jeong, Jong Bin;Son, Ki-Ho;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.129-142
    • /
    • 2022
  • Ginseng sprouts, which can be eaten from leaves to roots, has the advantage of not having to use pesticides without being affected by the season by using smart farms. The optimal cultivation timing of sprout ginseng was checked and the nutritional content and antioxidant activity were compared and analyzed. The values of total fatty acids and total minerals were no significant changes during the growth periods. The contents of total amino acids were slightly decreased to 45 days and after increased to 65 days. When the growth period was 65 days, arginine had the highest content of 3309.11 mg/100 g. The total phenolic contents were high at 3.73 GAE mg/g on the 45 days, and the total flavonoid contents were also the highest at 9.04 RE mg/g on the 45 days. The contents of total ginsenoside was not noticeable for the growth periods (29.83 on 25 days→32.77 on 45 days→26.02 mg/g on 65 days). The ginsenoside Rg2 (0.62 mg/g), Re (8.69 mg/g), Rb1 (4.75 mg/g) and Rd (3.47 mg/g) had highest contents on 45 days during growth. The values of phenolic acids and flavonols were gradually increased to 45 days (338.6 and 1277.14 ㎍/g) and then decreased to 65 days. The major compounds of phenolic acids and flavonols were confirmed to benzoic acid (99.03-142.33 ㎍/g) and epigallocatechin (416.03-554.64 ㎍/g), respectively. The values of 2,2-diphenyl-1-picrylhydrazyl (44.27%), 2,4,6-azino-bis (3-ethylbenzothiazoline-6-sulphnoic acid) diammonium salt (75.16%), and hydroxyl (63.29%) radical scavenging activities and ferric reducing/antioxidant power (1.573) showed the highest activity on the 45 days as well as results of total phenolic and total flavonoid contents.

Changes in Abscisic Acid and Gibberellin Levels during Stratification in Panax ginseng Roots (인삼근의 휴면타파과정에 있어서 Abscisic acid 함량 및 Gibberellin 활성의 변화)

  • Choi, Sun-Young;Lee, Kang-Soo;Ryu, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 1989
  • The present study was carried out to get the basic information for clarifying physiological mechanism of breaking dormancy and sprouting in Panax ginseng roots. Changes in Abscisic acid (ABA) content and Gibberellin (GA) activity were investigated in one-year-old root during stratification at 4$^{\circ}C$. 15$^{\circ}C$. and 15$^{\circ}C$ after 60day-treatment at 4$^{\circ}C$. Sprouting rate at 15$^{\circ}C$ was 35% in 30days storage at 4$^{\circ}C$ and 100% in longer than 60days, but there was no sprout in both the constant treatment at 4$^{\circ}C$ or 15$^{\circ}C$ regardless of the treatment period. The longer the period of low temperature treatment. number of days to the first and 50% sprouting was shortened, and number of days to 50% from first sprouting was also shortened. ABA content in the upper part of root(contained bud) was gradually increased at both 4$^{\circ}C$ and 15$^{\circ}C$ as the treatment period was extended. and the degree of increase was higher at 15$^{\circ}C$. In the lower part. it showed a slight increase at 15$^{\circ}C$. while showed little change at 4$^{\circ}C$ throughout the treatment period. In the 15$^{\circ}C$ treatment after 60days at 4$^{\circ}C$, it was greatly increased in the upper part. while rather slightly decreased in the lower part of root. GA activity in the upper part was gradually decreased at both 4$^{\circ}C$ and 15$^{\circ}C$, and the degree of decrease was higher at 15$^{\circ}C$. In the lower part. it was similar tendency to those in the upper part. In the 15$^{\circ}C$ treatment after 60days at 4$^{\circ}C$. it was remarkably increased in both the upper and lower part. The increase was great in the low Rf region, while the decrease appeared relatively in the high Rf region compared to those of 60day-treatment at 4$^{\circ}C$. The above results indicated that the breaking dormancy and sprouting of bud were closely associated with the degree of GA activities in response to temperature condition .during stratification rather than the direct effect associated with the changes in ABA content.

  • PDF

Sprouting Inhibition after CIPC Spraying on Early and Mid-season Potato Varieties during Storage in Semi-underground Warehouse at Room Temperature in Summer (CIPC 처리한 조·중생종 감자의 반지하 저장고를 이용한 하계 실온저장 중 맹아 억제 효과 비교)

  • Kyusuk Han;Byung-Sup Kim;Sae Jin Hong;Young Hun Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.172-180
    • /
    • 2023
  • This study was carried out to determine the sprouting period of early and mid-season varieties, which includes 'Atlantic', 'Chubaek', and 'Superior', during the summer storage period in a semi-underground warehouse without cooling system. And also it was investigated the effect of chlorpropham [Propan-2-yl N-(3-chlorophenyl)carbamate, CIPC] treatment on the sprouting inhibition for the varieties. This study was conducted to figure out a sprout inhibitory effect when CIPC was applied to 1kg of the potato tubers at concentrations of 10 mg and 20 mg which are lower than the treatment concentrations of ca 30 mg prescribed by the positive list system (PLS). The internal temperature of the warehouse used in this experiment was lowered by 5℃ or more than the outside temperature. The difference between the lowest and highest temperature during the experiment throughout the day was 5℃. It showed the effect of reducing to 1/2 of the difference in outdoor temperature. As for the sprouting of potatoes, the extremely early variety 'Chubaek' sprouts appeared at the 6th week of storage of control and it was the fastest sprouting potato among the control groups of the varieties. Sprouting began to appear in the Superior at the 6th week of storage, while the 'Atlantic' sprouted at the 8th week of storage. The appearance of sprouts was suppressed in all treatment groups of 'Atlantic' and 'Superior' varieties in CIPC treatments. Sprouts were observed in all treatment groups of 'Chubaek' after the 7th week, but the elongations of the sprouts in tubers were completely inhibited until the 8th week of storage. 'Atlantic' and 'Superior' seemed to have a sprouting inhibitory effect even with a low CIPC concentration of 10 mg·kg-1, with the exception of extremely early variety 'Chubaek' that breaks out of the dormancy quickly. Although weight loss occurred continuously during storage, it was minor loss of 0.7-1.6%. There was no consistent trend for changes of the loss in the varieties and CIPC treatments. Most common pathological disorder was the dry rot during the experiment, but only few were affected. The use of the tubers treated at 18℃ and 90% RH for 10 days and the rack of refrigeration system which lead to lack of convection seemed to have suppressed the spread of pathogens.

Quality characteristics of different parts of garlic sprouts produced by smart farms during growth (스마트팜 생산 새싹마늘의 부위별 및 생육 기간에 따른 품질 특성)

  • Yu-Ri Choi;Su-Hwan Kim;Chae-Mi Lee;Dong-Hun Lee;Chae-Yun Lee;Hyeong-Woo Jo;Jae-Hee Jeong;Imkyung Oh;Ho-Kyung Ha;Jungsil Kim;Chang-Ki Huh
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.272-286
    • /
    • 2023
  • Garlic sprouts can provide data on functional and food processing materials. This study compared the leaves, bulbs, and roots of garlic sprouts grown on smart farms during two growth periods (20 and 25 days). In addition, data for garlic bulbs grown in open fields were presented as reference materials. All garlic sprouts' total free sugar content decreased as the growth period increased. All plant parts' total organic acid content decreased as the growth period progressed, except for the root section. Potassium, phosphorus, and sulfur content increased during growth in all parts of the garlic sprouts. Alliin content decreased in all parts of the plant over time, whereas thiosulfinate content increased in the roots but decreased in the leaves and bulbs. Total polyphenol content increased in all parts of the plant during the growth period, except for the bulb, whereas the flavonoid content did not change significantly over time. The 2,2-diphenyl-1-picrylhydrazy (DPPH) and 2,2'-azinobis (3-ethylben-zothiazoline 6-sulfonate) (ABTS) free radical scavenging activities, as well as the superoxide dismutase (SOD)-like activity of garlic sprouts were 37.45-65.47%, 59.12-89.81%, and 89.52-98.59%, respectively. These activities tend to decrease during the growth period. Here, we showed that garlic sprouts have higher levels of functional substances and physiological activities than general garlic sprouts. It was also determined that a growth period of 20 days was suitable for garlic sprouts. Data for research on functional and food-processing materials can be obtained by analyzing garlic sprouts produced by smart farms.

Microbiological Evaluation of Foods and Kitchen Environments in Childcare Center and Kindergarten Foodservice Operations (보육시설과 유치원 급식의 식품 및 환경 미생물의 오염도 평가)

  • Seol, Hye-Rin;Park, Hyoung-Su;Park, Ki-Hwan;Park, Ae-Kyung;Ryu, Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.252-260
    • /
    • 2009
  • Whereas the numbers of childcare centers and kindergartens are increasing rapidly, systematic management to control the food safety of foodservice operation is not yet well established. Samples from 12 centers in Seoul and Gyeonggi Province were collected to assess the microbiological quality of 32 raw materials, 24 cooked foods, 76 food-contact surfaces (knives, cutting boards, dish towels and gloves), 17 employees' hands and 12 air-borne bacteria. The microbiological analyses were performed for aerobic plate counts (APC), Enterobacteriaceae, E. coli and 7 pathogens (B. cereus, C. jejuni, C. perfringens, L. monocytogenes, Salmonella spp., S. aureus, and V. parahaemolyticus). Among raw materials, E. coli ($1.39{\sim}2.08\;\log\;CFU/g$) were detected in 4 out of 6 meats and 7.46 log CFU/g of APC in tofu. High enterobacteriaceae levels of 4.23, 5.14 and 4.19 log CFU/g were found in cucumber salad, steamed spinach with seasonings and steamed bean sprout with seasonings, respectively. No pathogens were found in all samples except for C. perfringens detected from raw spinach and raw lotus root. Only APC and enterobacteriaceae were found in food-contact surfaces. Two of the 23 knives and three of the 24 kitchen boards showed over 500 CFU/$100\;cm^2$ of APC; also, APC levels (5.03 to 5.44 log CFU/g) were detected in 4 of the 12 dish towels. Only one glove showed Enterobacteriaceae (2.44 log CFU/glove) contamination. Enterobacteriaceae were found in 2 employees' hands ($2.37{\sim}4.44\;\log\;CFU$/hand) among the 16 employees. The contamination levels of air-borne bacteria were shown unacceptable in two (2.25 and 2.30 log CFU/petri-film/15 min) out of the 12 kitchen areas. These results suggest that the microbiological hazards in some foods and environments are not well controlled and thus a guideline should be provided to ensure the food safety in childcare center and kindergarten foodservice operations.

Analysis of Manganese Contents in 30 Korean Common Foods (한국인 상용식품 중 30종류 식품의 망간 함량 분석)

  • 최미경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1408-1413
    • /
    • 2003
  • This study was conducted to analyze manganese contents of Korean common foods. Contents of manganese in 30 foods were analyzed by ICP spectrometer. And daily manganese intake through 30 common foods was calculated using analysis data of this study and daily food intakes cited from report on 1998 national health and nutrition survey. The average manganese contents of foods analyzed were 949.6 $\mu\textrm{g}$ for rice, 236.1 $\mu\textrm{g}$ for Korean chinese cabbage kimchi, 27.2 $\mu\textrm{g}$ for citrus fruit, 2.6 $\mu\textrm{g}$ for milk, 214.6 $\mu\textrm{g}$ for radish root, 40.0 $\mu\textrm{g}$ for apple, 60.4 $\mu\textrm{g}$ for persimmon, 13.9 $\mu\textrm{g}$ for pork, 9.5 $\mu\textrm{g}$ for beef, 638.3 $\mu\textrm{g}$ for soybean curd, 184.0 $\mu\textrm{g}$ for radish kimchi, 56.0 $\mu\textrm{g}$ for pear, 18.4 $\mu\textrm{g}$ for beer, 11.3 $\mu\textrm{g}$ for egg, 9.5 $\mu\textrm{g}$ for carbonated beverage, 345.0 $\mu\textrm{g}$ for bread, 50.7 $\mu\textrm{g}$ for soju, 270.3 $\mu\textrm{g}$ for potato, 236.1 $\mu\textrm{g}$ for sweet potato, 91.2 $\mu\textrm{g}$ for ramyeon, 32.5 $\mu\textrm{g}$ for onion, 68.0 $\mu\textrm{g}$ for nabak kimchi, 538.2 $\mu\textrm{g}$ for soybean sprout, 112.5 $\mu\textrm{g}$ for welsh onion, 336.7 $\mu\textrm{g}$ for rice cake, 589.9 $\mu\textrm{g}$ for Korean chinese cabbage, 430.4 $\mu\textrm{g}$ for somyeon, 144.3 $\mu\textrm{g}$ for pumpkin, 3.0 $\mu\textrm{g}$ for yoghurt, and 614.4 $\mu\textrm{g}$ for spinach per 100 g of each food. The daily manganese intake through 30 common foods of Koreans in 1998 was 3420.7 $\mu\textrm{g}$. Major sources of dietary manganese were rice, kimchi, and soybean curd. Especially, rice supplied 68.1% of total dietary manganese intake through 30 common foods. Further studies are required to establish database and RDA of manganese.

History of Plant Protection Science since 1900 in Korea (한국(韓國)에 있어서의 식물보호(植物保護) 연구사(硏究史) -1900년대(年代)를 중심(中心)으로-)

  • Park, Jong-Seong
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.1
    • /
    • pp.69-95
    • /
    • 1979
  • The study was conducted to search developmental process of plant protection science from review of forty-three hundreds literatures presented since 1900 in Korea and to forecast future statues of the science to be done. About 80 percent of literatures related to plant protection science such as plant pathology, applied entomology, weed science and agricultural pharmacology were collected from publications of agricultural and forestry reseach organizations attached to Office of Rural Development and Office of Forestry. The rest of literatures were mainly collected from Korean Journal of Plant Protection Society and small number of literatures were also collected from publications of the other journals of crop science and thesis collection of agricultural colleges. In Korea, research organizations of plant protection science are divided into two main groups such as exclusive agricultural research organizations and agricultural colleges. It is pointed out that the former contributions to plant protection science are very great compared to those of the latter since 1900. From periodical consideration of developmental process of the science since 1900, the history or the science are divided into three eras such as introduction and sprout of modern plant protection science during the first forty years, distress of the science during the following twenty years including the Second World War and the Korean War and rapid growth of the science after 1961. In spite of long time distress of the science during the Second World War and the Korean War, the researches on plant protection science in post-war have been done twice as many as pre-war. From consideration of the subject plants in researches of plant protection, it is shown that a great many researches on protection of rice plant have been done and occupy 37 percent of plant protection researches since 1900. And also researches on protection of fruit-trees and cash-crops are not so many as those of rice plant but have been done in noticeable numbers. In fact, researches on protection of fruit-trees and cashcrops were the most important subjects of plant protection researches in pre-war while those of rice plant were the most important subjects after 1930, particulary in post-war. From consideration of contents of plant protection researches, it is said that more fundamental researches than applied ones such as practical control methods of diseases, insect pests and weeds were done in pre-war while more applied researches than fundamental ones were done in post-war, Among applied researches, those of chemical control were the most important subjects. Researches on disease and insect-pest resistance have been done in both pre-war and post-war while researches on forecasting of disease and insect-pest and race of plant pathogens have been done in post-war. And also researches on weed control mainly have been done after 1960. Researches on agricultural chemicals for control of diseases, insect pests and weeds still belong to a new field which must be expected in future, and there is nothing to notice with the exception of practical application of agricultural chemicals introduced from foreign countries. Some of important researches on diseases and insect pests were discussed in relation to developmental process of plant protection science in Korea since 1900. In future, researches on plant protection will be develop to the direction supporting importance of integrated control for plant protection. Therefore, it is pointed out that security of highly educated and trained scientists with enlargement of reseach fields of plant protection science are necessary and role of agricultural colleges for future development of the science must be emphasized.

  • PDF

Effect of Low Temperature Treatment of Seed Bulb and Planting Date on Plant Growth and Yield in Garlic (마늘의 파종기별(播種期別) 저온처리(低溫處理)의 차이(差異)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Seong Lyon;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.49-69
    • /
    • 1988
  • In order to develop a cropping system that can produce garlic in the period of short supply from March to April, effects of low temperature treatment of seed bulbs and planting dates, starting date of low temperature treatment, days of low temperature treatment on plant growth, maturity and yield were studied in Southern strain, 'Namhae' and in Northern strain, 'Euiseong' of garlic (Allium sativum). The results obtained were as follows. In Sorthern strain, sprouting was significantly enhanced by low temperature treatment only in Sep. 14, and Sep. 29 plantings. Days to sprout were least in 30 days of low temperature treatment of Sep. 14 planting and in 45 days treatment of Sep. 29 planting. When considering on the beginning date of low temperature treatment, a marked difference was observed between treatments started before July 31 and after Aug. 15. Sprouting was most enhanced in 45 days low temperature treatment of Aug. 15 and Aug. 30 plantings. In Northern strain, sprouting was en hanced by low temperature treatment in planting from Sep. 29 to Nov. 13 and low temperature treatment for 60 days was most effective. Effect of low temperature treatment on early plant growth was observed in Sep. 14 and Sep. 29 plantings, but the effect on plant growth at intermediate stage or thereafter was observed in up to Oct. 29 plantings. Optimun days for low temperature treatment on growth enhancement was 45 and 60 days in Southern strain and 60 days in Northern strain in each planting dates. In Southern strain, the longer the low temperature treatment and the later the planting date the less the number of leaves developed. In Northern strain, normal leaves were not developed in plantings from Sep. 14 to Nov. 13. In Southern strain, clove differentiation and bulbing were earlist in 45 and 60 days treatment of Sep. 14, Sep. 29, and Oct. 14 planting initiated on July 31 and Aug. 15. In Northern strain, clove differentiation and bulbing were earlist in 60 days treatment of Oct. 14 planting initiated on Aug. 15 and Aug. 30. In treatment initiated later than above, longer the low temperature treatment the earlier the clove differentiation and bulbing in both Southern and Northern strains. The earlier the initiation date and the longer of low temperature treatment, the earlier bolting in southern strain. In Northern strain, bolting was most enhanced in 45 and 60 days of low temperature treatment initiated on Aug. 15 and Aug. 30. The longer the low temperature treatment in plantings thereafter, the earlier the bolting. The earlier the planting date garlic bulbs. Harvest date was earliest in 45 and 60 days low temperature treatment started from July 31 to Aug. 30 in Southern strain, and it was in 60 and 90 days low temperature treatment initiated from July 31 to Aug. 30 in Northern strain. Bulb weight was heaviest in 45 days low temperature treatment of Oct. 14 planting and next was in 45 days treatment of Sep. 29 planting in Southern strain. In Northern strain, bulb weight was heaviest in 60 days treatment of Oct. 14 planting and next was in 45 days treatment of Oct. 14 planting. When considered in the aspect of the beginning date of low temperature treatment, bulb weight was heaviest in 45 days treatment started on Aug. 30 in Southern strain and in 60 days treatment started on Aug. 15 in Northern strain. A high negative correlation between days to harvest and plant height on January 12, and a high positive correlation between days to harvest and days clove differentiation were observed. This indicates that enhanced plant growth and clove differentiation induced by low temperature treatment advanced the harvest date. A high negative correlation between bulb weight and days to clove differentiation, days to harvest suggests that the enhanced clove differentiation result and in heavier bulb weight. From the above results, it suggested that early crop of garlic can be harvested by planting at the period of Sep. 29 to Oct. 14 after 45 days of low temperature treatment of seed bulbs of Southern strain. Then harvest date can be shortened by 30 days compared to control and garlic can be harvested in early April.

  • PDF