• Title/Summary/Keyword: spring-back

Search Result 295, Processing Time 0.028 seconds

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

Effect of Forming Temperature on Spring-back in Hot Forming Quenching of AA6061 Sheet (AA6061 판재의 핫 포밍 퀜칭 공정에서 성형온도가 스프링백에 미치는 영향)

  • Shim, I.B.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • Aluminum alloys are widely used in automotive industry because of their high strength-to-density ratio and excellent corrosion resistance. However, conventional cold stamping of aluminum alloys leads to low formability and excessive spring-back. To overcome these problems, Hot Forming Quenching (HFQ) is applied to manufacture automotive part using aluminum alloy. The purpose of this study is to investigate effect of forming temperature on spring-back in HFQ of T6 heat treated AA6061 sheet. In this study, hat shape forming test was adopted to evaluate spring-back characteristics according to various forming temperatures. In additions, the test was also performed with warm forming conditions in comparison with dimensional accuracy of HFQed part. The experimental results showed that dimensional accuracy of HFQed part was superior to warm formed part and amount of spring-back was decreased as forming temperature rise.

Prediction of Spring-back for GFR/CFR Unsymmetric Hybrid Composites (유리섬유/탄소섬유 강화 비대칭 하이브리드 복합재의 스프링 백 예측)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Won, Myung-Shik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.158-161
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of its excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be removed to keep the precision of designed shape. In this research, the spring-back of {glass fiber / epoxy}+{carbon fiber / epoxy} unsymmetric hybrid composites were predicted using Classical Lamination Theory (CLT), and compared with the experimental data. Additionally, using finite element analysis (ANSYS), the predicted data and experimental data were compared. The predicted values by CLT and ANSYS were well matched with experimental data.

  • PDF

The Spring-back Phenomena in Soild Phase Bending of Glass Fiber Reinforced Polypropylene (유리섬유 강화 Polypropylene의 고상굽힘성형시 Spring-back 현상)

  • 남궁천;김성일;이중희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.646-649
    • /
    • 1995
  • An experimental and analyical investigations were undertaken to improve understanding of spring-back phenomena of chopped fiber reinforced thermoplastic composite sheet. The materials tested contained 20, 35, 40 percent by weight of readomly oriented glass fiber in a prolypropylene matrix. The simple bending tests were performed at temperatures ranging form 75 .deg. c to 150 .deg. c with 25 .deg. c increment and at punch speed of 1mm/sec and 0.01mm/sec. The spring-back angel measured in pure bending is compared with the prediction base on the analytical model. Good agreement between experimental and predicted results was observed.

  • PDF

Spring Back in Amorphous Sheet Forming at High Temperature (아몰퍼스 고온 판재성형시 스프링백)

  • Lee Y-S
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model (항복함수 및 경화모델에 따른 DP980 강판의 스프링백 예측)

  • Kim, J.H.;Kang, G.S.;Lee, H.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill'48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.

Study on Spring-Back Effect according to Roll Gap and Forming Velocity of Roll Forming Process (롤 포밍 공정의 롤 갭과 성형속도에 따른 스프링 백 영향 연구)

  • Kim, Dong Hong;Yoon, Dae-Hwan;Seol, Sang-Seok;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • The spring-back and bow phenomenon in the roll forming process are important factors regarding the accuracy of evaluation of production goods. The purpose of this study was to determine the influence of spring-back and bow phenomenon according to the main variables (forming velocity and roll gap). The material of the forming sheet was high tension steel (SPFH 590), which has been used commonly in recent years. In order to accurately measure the spring-back and bow phenomenon, the forming sheet was formed into a V-shape. The study was applied to OFAT (One Factor at a Time) experimentation, with respect to the experimental variables (the forming speed and the roll gap). In the experimental results, the forming speed had a small influence on the spring-back and bow phenomenon. However, the roll gap had a greater influence on the springback and the bow phenomenon, as opposed to the forming speed.

Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force (스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

Three-Dimensional Finite Element Analysis of Forging Processes with Back Pressure Exerted by Spring Force (스프링 힘에 의한 배압부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.273-276
    • /
    • 2010
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

A Study on Spring Back in Sheet Forming of Amorphous Alloys (아몰퍼스 판재 성형의 스프링 백에 관한 연구)

  • Yoon S.H.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF