• Title/Summary/Keyword: spring steel

Search Result 351, Processing Time 0.027 seconds

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

Development of Buckling Restrained Brace Laterally Supported by Semicircular Springs (반원형 스프링으로 횡지지된 건식형 좌굴방지가새의 개발)

  • Park, Keum Sung;Lee, Sang Sup;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.549-558
    • /
    • 2014
  • Buckling restrained braces(BRBs) developed as a seismic protection element, hysteretic damper, have been investigated in America and Japan mainly. BRBs are composed of a steel core and concrete-filled steel casing. It is one of the major causes of drop in productivity to fill the steel casing with concrete. To improve this problem, the BRB is introduced in which the steel core is restrained with a pair of semicircular springs. In this paper, the numerical and analytical investigation about the desirable configuration for a semicircular spring is presented. Firstly, the stiffness and strength of semicircular spring is determined theoretically to buckle into a very high-order modes. Then, the required stiffness and strength are calculated under the practical design conditions and considered as reference values to find a proper configuration. The material strength and thickness of semicircular spring are chose from the finite element analysis for 5 semicircular springs with varying height. Finally, the nonlinear buckling analysis of BRB with proper semicircular springs shows that the bucking strength of the whole BRB is very similar to the strength of steel core with length between semicircular springs.

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz;Seungho Chun;Mohamed Noureldin;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

A FEM study about the initial stress distribution on canine altered by the application point of preangulated TMA T-loop spring (Preangulated TMA T-loop spring의 적용 위치 변화에 따른 견치의 초기 응력 분포에 대한 유한 요소법적 연구)

  • Kim, Jung-Min;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.521-534
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution on canine altered by the application point of preangulated T-loop spring. For this study, the finite element models of upper left canine, upper left second premolar and upper left first molar were made. Also, the finite element models of $0.017{\times}0.025$ inch preangulated, preactivated T-loop spring and $0.018{\times}0.025$ inch stainless steel wire were made. Three types of T-loop spring were made . the middle of activated T-loop is positioned in accordance with the middle position of distance of bracket position of both the canine and first molar, 2mm anterior, 2mm posterior. We compared the forces and the distribution of stress that were generated by the difference of position of T-loop spring. The results were as follows. 1. All of the 3 types of T-loop spring showed the similar retraction forces. 2. All showed the similar amount & pattern of stress distribution. 3. The centers of rotation of canine in 3 types of T-loop spring were same and were positioned between C and D plane. 4. The canine showed the intrusive force by 2mm anterior positioned T-loop spring, but the extrusive force by 2mm posterior positioned T-loop suing. Neverthless, because of the small amount of the forces, the effect of vertical force was not significant.

  • PDF

Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies

  • Murigendrappa, S.M.;Maiti, S.K.;Srirangarajan, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.635-658
    • /
    • 2005
  • The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

The Effect of Compressive Residual Stresses of Two-stage Shot Peening for Fatigue Strength of Spring Steel

  • Park, Keyoung Dong;Jung, Chang Gi;Kwon, Oh Heon
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Recently the steel parts used in automobiles are required to be used under high stress more than ever before due to the need of keeping the weight down. To achieve this requirement of the high strength steel, it must be necessary to decrease inclusion contents and surface defects as like decarburization, surface roughness etc. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel (JISG408l-SUP7, SAE 9254 and DIN 50CrV4) are shaped. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotating bending fatigue test and it results from (1) decreasing the surface roughness (2) unchanging the surface hardness (3) increasing the compressive residual stress. Moreover, results also show fatigue failures originated at the inclusion near the surface, and this inclusion type is turned out to be an alumina of high hardness.