• Title/Summary/Keyword: spreading model

Search Result 444, Processing Time 0.022 seconds

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-24
    • /
    • 2015
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

CALCULATION OF HYDRODYNAMIC CHARACTERISTICS FOR SHIP'S PROPULSION MECHANISM OF WEIS-FOGH TYPE (Weis-Fogh형 선박추진기구의 유체역학적 특성계산)

  • Ro K.D.;Kang M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.305-310
    • /
    • 2005
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart low and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

  • PDF

Predicting the Invasion Pathway of Balanus perforatus in Korean Seawaters

  • Choi, Keun-Hyung;Choi, Hyun-Woo;Kim, Il-Hoi;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The European Common Barnacle Balanus perforatus Brugiere (Crustacea, Cirripedia) has been introduced into the east coast of Korea, presumably via the ballast water of ships. The species has since been spreading along both the northern and southern coast to the east, most likely due to alongshore currents. We predicted the potential range expansion of Balanus perforatus in Korean waters using Genetic Algorithm for Rule-set Prediction (GARP), an environmental niche modeling technique. The results show that much of the southern coastal waters of Korea could be colonized by the spread of the nonindigenous species, but that the west coast is unlikely to be invaded. More sampling on the west coast would enhance the predictability of the model. To our knowledge, this is the first report of its kind for predicting marine nonindigenous species in Korean waters using GARP modeling.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

A Study on the Impact and Solidification of the Liquid Metal Droplet in the Thermal Spray Deposition onto the Substrate with Surface Defects (표면 결함이 있는 모재에 대한 용사 공정에서 용응 금속 액적의 충돌현상과 응고 과정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1597-1604
    • /
    • 2002
  • In this study, numerical investigation has been performed on the impingement, spreading and solidification of a coating material droplet impacting onto a solid substrate in the thermal spray process. The numerical model is validated through the comparison of the present numerical result with experimental data fer the flat substrate without surface defects. An analysis of deposition formation on the non-polished substrate with surface defects is also performed. The parametric study is conducted with various surface defect sizes and shapes to examine the effect of surface defects on the impact and solidification of the liquid droplet on the substrate.

TRAVELING WAVE SOLUTIONS IN NONLOCAL DISPERSAL MODELS WITH NONLOCAL DELAYS

  • Pan, Shuxia
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.703-719
    • /
    • 2014
  • This paper is concerned with the traveling wave solutions of nonlocal dispersal models with nonlocal delays. The existence of traveling wave solutions is investigated by the upper and lower solutions, and the asymptotic behavior of traveling wave solutions is studied by the idea of contracting rectangles. To illustrate these results, a delayed competition model is considered by presenting the existence and nonexistence of traveling wave solutions, which completes and improves some known results. In particular, our conclusions can deal with the traveling wave solutions of evolutionary systems which admit large time delays reflecting intraspecific competition in population dynamics and leading to the failure of comparison principle in literature.

Blind Multi-user Estimation for Asynchronous DS-CDMA Systems (비동기 DS-CDMA 시스템에서의 블라인드 다중사용자 채널 추정 기법)

  • 정형성;성하종;이충용;유대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.939-946
    • /
    • 1999
  • A new blind multi-user channel estimation algorithm for the mobile communication systems is proposed. The proposed algorithm exploits the second-order statistics of a received signal and the subspace concept, and requires much less computational complexity than the existing algorithms. The algorithm can reduce the comptational load by estimating the physical channels excluding the spreading codes. We formulate the algorithm using the multi-channel model for asynchronous DS-CDMA systems and perform numerical experiments to evaluate the performance of the proposed algorithm.

  • PDF

Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 수치연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2130-2138
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading characteristics in railway tunnels with the rescue stations. Experiments were carried out for n-heptane pool fires with a square length 4 cm at different fire locations, and the heat release rates (HRR) were obtained by the measurement of burning rates. In addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

  • PDF

Attenuation of Peak Spectral Amplitude for the Vertical Displacement in the Kyungsang Basin (경상분지에서의 수직변위값에 대한 최대 스펙트럼 진폭의 감쇠)

  • 김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.45-51
    • /
    • 1999
  • The attenuations of peak vertical displacements are studies using a conventional least squeare regression technique for microearthquakes occurred in the Kyungsang Basin southeastern Korea. The regression model applied to bandpass-fitered ground motion data includes parameters to account for geometric spreading anelastic attenuation depending on frequency source size and station site effects. Thirty nine displacement traces obtained by integrating velocity records for six shallow local microearthquakes are used to determine attenuation characteristics in the Basin. The regression result of the peak amplitude data leads to Q(f)=59.9 {{{{ {f }^{0.955 } }} for 1.5Hz$\leq$ f $\leq$ 25 Hz. It appears that the anelastic attenuation in the Kyungsang Basin is greater than that in the Western North America Area.

  • PDF

Analysis of 3-Dimensional Current Flow by n-electrode Pattern Shape in GaN-based Vertical LED (수직형구조 GaN계 발광다이오드에서 전극구조 모양에 따른 3차원 전류분포 해석)

  • Yun, Ju-Seon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.231-232
    • /
    • 2008
  • The effect of n-electrode patterns on the current distribution in active region is investigated in GaN-based blue vertical light emitting diodes (VLEDs). A 3-dimension circuit model is adopted to analyze the current flow patterns in VLEDs. We had fabricated VLEDs having different n-electrode patterns, measured their current-voltage characteristics, and compared to the numerical simulation. It turns out that the current spreading in VLEDs is strongly dependent on the n-electrode pattern. Some design guidelines for n-electrode patterns to produce uniform current injection are presented.

  • PDF