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TRAVELING WAVE SOLUTIONS IN NONLOCAL

DISPERSAL MODELS WITH NONLOCAL DELAYS

Shuxia Pan

Abstract. This paper is concerned with the traveling wave solutions of
nonlocal dispersal models with nonlocal delays. The existence of traveling
wave solutions is investigated by the upper and lower solutions, and the
asymptotic behavior of traveling wave solutions is studied by the idea of
contracting rectangles. To illustrate these results, a delayed competition
model is considered by presenting the existence and nonexistence of trav-
eling wave solutions, which completes and improves some known results.
In particular, our conclusions can deal with the traveling wave solutions

of evolutionary systems which admit large time delays reflecting intra-
specific competition in population dynamics and leading to the failure of
comparison principle in literature.

1. Introduction

Nonlocal dispersal is an important spatial mode modeling many practical
problems, including in material sciences [1], life sciences [13] and physics theory
[8]. A typical reaction model with nonlocal dispersal takes the form as follows

∂u(x, t)

∂t
=

∫

R

J(x− y)[u(y, t)− u(x, t)]dy + f(u(x, t))

=: [J ∗ u](x, t) + f(u(x, t)),(1.1)

where x ∈ R, t > 0, u ∈ R, f : R → R is a reaction function and J : R → R

formulates the spatial dispersal. If the time delay is concerned in (1.1), then
one corresponding delay version of (1.1) is

(1.2)
∂u(x, t)

∂t
= [J ∗ u](x, t) + f(u(x, t), u(x, t− τ)),

in which f : R2 → R and τ ≥ 0 is a constant. In literature, the corresponding
propagation theory of nonlocal dispersal models (1.1) and (1.2) has been widely
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studied, and most results are indexed by the traveling wave solutions and as-
ymptotic speed of spreading. We refer to Bates et al. [2], Carr and Chmaj [3],
Chen [4], Coville and Dupaigne [5, 6], Jin and Zhao [9], Li et al. [10], Pan [14],
Pan et al. [15, 16], Shen and Zhang [17], Sun et al. [20], Wu and Liu [21], Xu
and Weng [23], Zhang et al. [26], Zhang et al. [27] and the references therein.

Because the traveling wave solution is a special entire solution defined for all
t ∈ R and the asymptotic speed of spreading involves the long time behavior of
the corresponding initial value problem, then the comparison principle is one
of the most important tools in these studies (to estimate these properties of
propagation modes by some special auxiliary functions/equations). Of course,
in (1.1), the comparison principle holds once f satisfies proper continuous con-
dition. But in (1.2), the comparison principle does not hold for many special
f . For example, let

(1.3) f(u(x, t), u(x, t− τ)) = u(x, t)(1 − u(x, t)− au(x, t− τ)), a > 0.

If τ > 0 is large, then the comparison principle fails such that the corresponding
traveling wave solutions cannot be investigated by the mentioned results. Of
course, if τ > 0 is very small, then we can obtain the comparison principle on
a proper interval in the sense of the exponential order [19], and establish the
existence of monotone traveling wave solutions of (1.2) with (1.3) by Pan [14].

In this paper, we shall further consider the traveling wave solutions of (1.2)
and more systems such that we can at least answer the existence/nonexistence
of traveling wave solutions of (1.2)-(1.3) with large τ > 0. Moreover, since
the delay in (1.2) cannot model the individual movements in history [7], we
shall investigate the traveling wave solutions of nonlocal dispersal systems with
nonlocal delays in this paper. In order to focus on mathematical idea, we
consider the traveling wave solutions of the following nonlocal dispersal systems
with nonlocal delays
(1.4)










∂u1(x, t)

∂t
= d1[J1 ∗ u1](x, t) + f1(u1(x, t), (K1 ∗ u1)(x, t), (K2 ∗ u2)(x, t)),

∂u2(x, t)

∂t
= d2[J2 ∗ u2](x, t) + f2(u2(x, t), (K3 ∗ u1)(x, t), (K4 ∗ u2)(x, t)),

in which x ∈ R, t > 0, (u1, u2) ∈ R
2, d1, d2 are positive constants, J1, J2

are probability functions formulating the random dispersal of individuals and
satisfy the following assumptions:

(J1) Ji is nonnegative and Lebesgue measurable for each i = 1, 2;
(J2) for any λ ∈ R,

∫

R
Ji(y)e

λydy <∞, i = 1, 2;

(J3)
∫

R
Ji(y)dy = 1, Ji(y) = Ji(−y), y ∈ R, i = 1, 2.

In (1.4), the convolutions are defined by

(1.5) (Ki ∗ uj)(x, t) =

∫

R

Ki(x− y)uj(y, t− τi)dy, i ∈ I, j = 1, 2,

hereafter I =: {1, 2, 3, 4}, τi ≥ 0 for each i ∈ I and Ki satisfies
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(K1) Ki : R → R is nonnegative for all i ∈ I;
(K2)

∫

R
Ki(x)dx = 1,Ki(x) = Ki(−x), x ∈ R, i ∈ I;

(K3) for any λ > 0,
∫

R
Ki(x)e

λxdx <∞, i ∈ I;

(K4) if τi = 0 for i ∈ {1, 4}, then
∫

R\{0}
Ki(x)dx = 1.

To better formulate our conditions and results, we now give the main as-
sumptions on f1, f2 in (1.4) as follows:

(F1) f1(·, u, v) and f2(·, u, v) are monotone decreasing in u, v, without loss
of generality, we take the decreasing monotonicity in Sections 2-4;

(F2) there exists M = (m1,m2) with m1 > 0,m2 > 0 such that

f1(m1, 0, 0) ≤ 0, f2(m2, 0, 0) ≤ 0, f1(0, 0, 0) = 0, f2(0, 0, 0) = 0;

(F3) there exists L > 0 such that
{

|f1(v1, v2, v3)− f1(v4, v5, v6)| < L(|v4 − v1|+ |v5 − v2|+ |v6 − v3|),

|f2(v7, v8, v9)− f1(v10, v11, v12)| < L(|v10 − v7|+ |v11 − v8|+ |v12 − v9|)

with 0 ≤ v1, v2, v4, v5, v8, v11 ≤ m1 and 0 ≤ v3, v6, v7, v9, v10, v12 ≤ m2.

These conditions state some monotone, invariant and continuous conditions
on the nonlinearities. In (F1), we give a monotone condition appealing to
competition behavior between intra-specific and inter-specific actions in pop-
ulation dynamics, such a condition is given to simplify the discussion in the
remainder of this paper and better display mathematical idea. The invariance
condition in (F2) depends on the monotone conditions in (F1). For exam-
ple, if the monotone conditions in (F1) become the quasimonotonicity ([19]):
f1(v1, v2, v3), f2(v1, v2, v3) are monotone decreasing in v2, v3 ∈ R

+, then (F2)
is: there exists M = (m1,m2) with m1 > 0,m2 > 0 such that

f1(m1,m1,m2) ≤ 0, f2(m2,m1,m2) ≤ 0,

and the discussion in Sections 2-4 can be similarly applied to such a monotone
condition, see Pan et al. [15].

To obtain the existence of traveling wave solutions, we shall introduce the
definition of upper and lower solutions of the corresponding traveling wave
system of (1.4), which depends on the monotone condition (F1). Furthermore,
we shall consider the asymptotic behavior of traveling wave solutions by the idea
of contracting rectangles of the corresponding functional differential systems.
These ideas were earlier used in the study of partial functional differential
systems by Lin and Ruan [12]. Moreover, to illustrate our results, we shall
investigate the existence and nonexistence of traveling wave solutions if (1.4)
admits the following nonlinearity (see Xia et al. [22], Yu and Yuan [24])

(1.6)

{

f1 = r1u1(x, t)(1 − u1(x, t)− a1(K1 ∗ u1)(x, t)− b1(K2 ∗ u2)(x, t)),

f2 = r2u2(x, t)(1 − u2(x, t)− a2(K3 ∗ u1)(x, t)− b2(K4 ∗ u2)(x, t)),

in which all the parameters are nonnegative.
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In particular, our discussion is independent of the size of τ =: maxi∈I{τi}.
Therefore, we improve some known results on the existence and asymptotic
behavior of traveling wave solutions of some models, at least for the system
studied in [22]. Moreover, we also present the nonexistence of nontrivial trav-
eling wave solutions in Section 5 and we obtain the minimal wave speed of
models in Xia et al. [22], Yu and Yuan [24, Model 1.3], which completes these
known conclusion.

The rest of this paper is organized as follows. In Section 2, we list necessary
preliminaries. The existence of traveling wave solutions of nonlocal dispersal
models is studied in Section 3. In Section 4, the asymptotic behavior of trav-
eling wave solutions is investigated by the idea of contracting rectangles. We
consider the existence and nonexistence of traveling wave solutions of a delayed
competitive system with nonlocal dispersal in Section 5.

2. Preliminaries

In this paper, we use the standard partial ordering and order intervals in R

or R2, and apply ‖ · ‖ to denote the norm in R
2. Define

X = {U : U is a bounded and uniformly continuous function from R to R
2},

then X is a Banach space equipped with the standard supremum norm. If
a,b ∈ R

2 with a ≤ b, then

X[a,b] = {U ∈ X : a ≤ U(ξ) ≤ b, ξ ∈ R}.

C1(R,R2) is defined by

C1(R,R2) = {(u, v) : (u, v), (u′, v′) ∈ X}.

Let µ > 0 be a constant. Denote

Bµ

(

R,R2
)

=

{

Φ ∈ X : sup
x∈R

‖Φ(x)‖e−µ|x| <∞

}

and
|Φ|µ = sup

x∈R

‖Φ(x)‖e−µ|x|.

Then
(

Bµ (R,R
m) , |·|µ

)

is a Banach space.

Definition 2.1. A traveling wave solution of (1.4) is a special solution with
the form

u1(x, t) = φ1(ξ), u2(x, t) = φ2(ξ), ξ = x+ ct,

where c > 0 is the wave speed with which the wave profile (φ1, φ2) ∈ C1(R,R2)
propagates in the spatial media R.

By the above definition, (φ1, φ2) with c > 0 must satisfy
(2.1)
{

cφ′1(ξ) = d1[J1 ∗ φ1](ξ) + f1(φ1(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ)), ξ ∈ R,

cφ′2(ξ) = d2[J2 ∗ φ2](ξ) + f2(φ2(ξ), (K3 ∗ φ1)(ξ), (K4 ∗ φ2)(ξ)), ξ ∈ R
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with

(2.2)

{

[Ji ∗ φi](ξ) =
∫

R
Ji(y)[φi(ξ − y)− φi(ξ)]dy, i = 1, 2,

(Ki ∗ φj)(ξ) =
∫

R
Ki(ξ − y)φj(y − cτi)dy, i ∈ I, j = 1, 2.

Moreover, to model the transition process between different states, we often
add proper asymptotic boundary conditions of (φ1, φ2). In this paper, we
require that

(2.3) lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = (0, 0), lim inf
ξ→∞

(φ1(ξ), φ2(ξ)) ≫ (0, 0).

Since ξ = x+ct, then a traveling wave solution satisfying (2.2)-(2.3) formulates
the simultaneously successful invasion of two competitive species in population
dynamics [18]. In particular, we also assume that

(F4) there exists E = (e1, e2) ≫ (0, 0) such that f1(e1, e1, e2) = f2(e2, e1, e2)
= 0,

and study the following stronger condition

(2.4) lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = (0, 0), lim
ξ→∞

(φ1(ξ), φ2(ξ)) = (e1, e2).

Let β > 0 be a constant such that

(β − d1)φ1 + f1(φ1,m1,m2), (β − d2)φ2 + f2(φ2,m1,m2)

are monotone increasing in φ1 ∈ [0,m1], φ2 ∈ [0,m2], respectively.
For Φ = (φ1, φ2) ∈ X[0,M], define

{

H1(φ1, φ2)(ξ)=βφ1(ξ)+d1[J1 ∗ φ1](ξ)+f1(φ1(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ)),

H2(φ1, φ2)(ξ)=βφ2(ξ)+d2[J2 ∗ φ2](ξ)+f2(φ2(ξ), (K3 ∗ φ1)(ξ), (K4 ∗ φ2)(ξ)).

With these notations, let P = (P1, P2) : X[0,M] → X be

{

P1(φ1, φ2)(ξ) =
1
c

∫ ξ

−∞
e−

β(ξ−s)

c H1(φ1, φ2)(s)ds,

P2(φ1, φ2)(ξ) =
1
c

∫ ξ

−∞
e−

β(ξ−s)

c H2(φ1, φ2)(s)ds.

Then a fixed point of P is a solution to (2.1), and it suffices to investigate the
existence and asymptotic behavior of fixed points of P .

Finally, we recall some results in Jin and Zhao [9], Shen and Zhang [17].
Consider

(2.5)

{

∂u(x,t)
∂t

= d[J ∗ u](x, t) + ru(x, t) [1− u(x, t)] ,

u(x, 0) = χ(x), x ∈ R,

where J satisfies (J1)-(J3), d > 0 and r > 0 are constants, and the initial value
χ(x) is uniformly continuous and bounded. By [9, Theorem 2.3], we have the
following comparison principle of (2.5).
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Lemma 2.2. Assume that 0 ≤ χ(x) ≤ 1. Then (2.5) admits a solution for

all x ∈ R, t > 0. If w(x, 0) is uniformly continuous and bounded, and w(x, t)
satisfies

{

∂w(x,t)
∂t

≥ (≤)d[J ∗ w](x, t) + rw(x, t) [1− w(x, t)] , x ∈ R, t > 0,

w(x, 0) ≥ (≤)χ(x), x ∈ R,

then

w(x, t) ≥ (≤)u(x, t), x ∈ R, t > 0.

For c > 0, λ > 0, define

Θ(λ, c) = d

[
∫

R

J(y)eλydy − 1

]

− cλ+ r.

Lemma 2.3. There exists c∗ > 0 such that

(R1) if c < c∗, then Θ(λ, c) > 0 for any λ > 0;
(R2) if c > c∗, there exist positive constants µ1(c), µ2(c) such that

Θ(λ, c)











= 0, λ = µ1(c), µ2(c),

< 0, λ ∈ (µ1(c), µ2(c)),

> 0, λ ∈ (0, µ1(c)
⋃

(µ2(c),+∞).

Lemma 2.4. Assume that χ(x) > 0. Then for any c < c∗, we have

lim inf
t→∞

inf
|x|<ct

u(x, t) = lim sup
t→∞

sup
|x|<ct

u(x, t) = 1.

3. Existence of traveling wave solutions

To investigate the existence of traveling wave solutions, we first introduce
the following upper and lower solutions of (2.1).

Definition 3.1. Assume that (F1)-(F3) hold and

Φ(ξ) = (φ1(ξ), φ2(ξ)),Φ(ξ) = (φ
1
(ξ), φ

2
(ξ)) ∈ X[0,M]

are differentiable for ξ ∈ R \ T, where T contains finite points of R. If Φ(ξ) ≥
Φ(ξ) satisfy
(3.1)
{

cφ
′

1(ξ) ≥ d1[J1 ∗ φ1](ξ) + F 1(ξ), cφ
′

2(ξ) ≥ d2[J2 ∗ φ2](ξ) + F 2(ξ), ξ ∈ R \ T,

cφ′
1
(ξ) ≤ d1[J1 ∗ φ1

](ξ) + F 1(ξ), cφ
′

2
(ξ) ≤ d2[J2 ∗ φ2](ξ) + F 2(ξ), ξ ∈ R \ T,

in which F 1(ξ), F 2(ξ), F 1(ξ), F 2(ξ) are defined by

(3.2)



















F 1(ξ) = f1(φ1(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ)),

F 2(ξ) = f2(φ2(ξ), (K3 ∗ φ1)(ξ), (K4 ∗ φ2)(ξ)),

F 1(ξ) = f1(φ1
(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ)),

F 2(ξ) = f2(φ2
(ξ), (K3 ∗ φ1)(ξ), (K4 ∗ φ2)(ξ)),

then Φ(ξ) is an upper solution while Φ(ξ) is a lower solution of (2.1).
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We now present the main conclusion of this section.

Theorem 3.2. Assume that (J1)-(J3), (K1)-(K4) and (F1)-(F3) hold. For

any fixed c > 0, if (2.1) admits an upper solution Φ ∈ X[0,M] and a lower

solution Φ ∈ X[0,M], then (2.1) has a positive solution Φ ∈ X[0,M] satisfying

Φ ≤ Φ ≤ Φ.

In the remainder of this section, we shall prove the theorem by several lem-
mas, through which the conditions of Theorem 3.2 will be imposed. Define

Γ = {Φ ∈ X : Φ ≤ Φ ≤ Φ}.

Lemma 3.3. Assume that Φ = (φ1, φ2) ∈ Γ. Then P (Φ) ∈ Γ.

Proof. By (F3), P (Φ) ∈ X. Using (F1), we have
{

H1(φ1, φ2)(ξ) ≥ βφ
1
(ξ) + d1[J1 ∗ φ1

](ξ) + F 1(ξ) =: H1(ξ), ξ ∈ R,

H1(φ1, φ2)(ξ) ≤ βφ1(ξ) + d1[J1 ∗ φ1](ξ) + F 1(ξ) =: H1(ξ), ξ ∈ R.

Let

P 1(ξ) =
1

c

∫ ξ

−∞

e−
β(ξ−s)

c H1(s)ds, P 1(ξ) =
1

c

∫ ξ

−∞

e−
β(ξ−s)

c H1(s)ds, ξ ∈ R.

Then it suffices to prove that

φ
1
(ξ) ≤ P 1(ξ) ≤ P 1(ξ) ≤ φ1(ξ), ξ ∈ R.

In fact, let
T = {T1, T2, . . . , Tn}

and denote T0 = −∞, Tn+1 = ∞. If ξ ∈ (Tk−1, Tk) with some k ∈ {1, 2, . . . , n+
1}, then

P 1(ξ) =
1

c

∫ ξ

−∞

e−
β(ξ−s)

c H1(s)ds

=

(

k−1
∑

i=0

1

c

∫ Ti

Ti−1

+
1

c

∫ ξ

Tk−1

)

e−
β(ξ−s)

c H1(s)ds

≤

(

k−1
∑

i=0

1

c

∫ Ti

Ti−1

+
1

c

∫ ξ

Tk−1

)

e−
β(ξ−s)

c

(

cφ
′

1(s)− βφ1(s)
)

= φ1(ξ).

Using the continuity of both P 1(ξ) and φ1(ξ), we have

P 1(ξ) ≤ φ1(ξ), ξ ∈ R.

In a similar way, we can verify that

φ
1
(ξ) ≤ P 1(ξ), ξ ∈ R

and
φ
2
(ξ) ≤ P2(Φ)(ξ) ≤ φ2(ξ), ξ ∈ R.
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The proof is complete. �

Lemma 3.4. If µ < β

2c , then P : Γ → Γ is complete continuous in the sense

of | · |µ.

Proof. Let Φ = (φ1, φ2),Ψ = (ψ1, ψ2) ∈ Γ. Then

|H1(φ1, φ2)(ξ)−H1(ψ1, ψ2)(ξ)|

= |(β − d1)φ1(ξ) + f1(φ1(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ))

− (β − d1)ψ1(ξ)− f1(ψ1(ξ), (K1 ∗ ψ1)(ξ), (K2 ∗ ψ2)(ξ))

+d1

∫

R

J1(ξ − y)φ1(y)dy − d1

∫

R

J1(ξ − y)ψ1(y)dy

∣

∣

∣

∣

≤ (β − d1) |φ1(ξ)− ψ1(ξ)|+ d1

∫

R

J1(ξ − y) |φ1(y)− ψ1(y)| dy

+ |f1(φ1(ξ), (K1∗φ1)(ξ), (K2∗φ2)(ξ))−f1(ψ1(ξ), (K1∗ψ1)(ξ), (K2∗ψ2)(ξ))|

≤ (L+ β − d1) |φ1(ξ)− ψ1(ξ)|+ d1

∫

R

J1(ξ − y) |φ1(y)− ψ1(y)| dy

+ L

∫

R

K1(ξ − y) |φ1(y − cτ1)− ψ1(y − cτ1)| dy

+ L

∫

R

K2(ξ − y) |φ2(y − cτ2)− ψ2(y − cτ2)| dy,

and

|P1(φ1, φ2)(ξ) − P1(ψ1, ψ2)(ξ)| e
−µ|ξ|

≤
(L+ β − d1)e

−µ|ξ|

c

∫ ξ

−∞

e−
β(ξ−s)

c |φ1(s)− ψ1(s)| ds

+
d1e

−µ|ξ|

c

∫ ξ

−∞

e−
β(ξ−s)

c

(
∫

R

J1(s− y) |φ1(y)− ψ1(y)| dy

)

ds

+
Le−µ|ξ|

c

∫ ξ

−∞

e−
β(ξ−s)

c

(
∫

R

K1(s− y) |φ1(y − cτ1)− ψ1(y − cτ1)| dy

)

ds

+
Le−µ|ξ|

c

∫ ξ

−∞

e−
β(ξ−s)

c

(
∫

R

K2(s− y) |φ2(y − cτ2)− ψ2(y − cτ2)| dy

)

ds

=: I1 + I2 + I3 + I4,

in which the definitions of I1, I2, I3, I4 are clear. Furthermore,

I1 =
(L+ β − d1)e

−µ|ξ|

c

∫ ξ

−∞

e−
β(ξ−s)

c |φ1(s)− ψ1(s)| ds

=
(L+ β − d1)e

−µ|ξ|

c

∫ ξ

−∞

e−
β(ξ−s)

c eµ|s| |φ1(s)− ψ1(s)| e
−µ|s|ds

≤
|Φ−Ψ|µ (L+ β − d1)

c

∫ ξ

−∞

e−
β(ξ−s)

c e−µ|ξ|eµ|s|ds.
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If ξ ≤ 0, then −µ |ξ|+ µ |s| = µ(ξ − s). If ξ > 0, s ≤ 0, then

−µ |ξ|+ µ |s| = µ(−ξ − s) ≤ µ(ξ − s).

If ξ > 0, s > 0, then

−µ |ξ|+ µ |s| = µ(−ξ + s) = −µ(ξ − s) ≤ µ(ξ − s).

Therefore, we obtain
∫ ξ

−∞

e−
β(ξ−s)

c e−µ|ξ|eµ|s|ds ≤

∫ ξ

−∞

e(
cµ−β

c )(ξ−s)ds =
c

β − cµ
,

which further implies that

I1 ≤
(L+ β − d1)

β − cµ
|Φ−Ψ|µ .

In a similar way, we have

I2 ≤
d1
∫

R
J1(y)e

µ|y|dy

β − cµ
|Φ−Ψ|µ ,

I3 ≤
Leµcτ1

∫

R
K1(y)e

µ|y|dy

β − cµ
|Φ−Ψ|µ ,

I4 ≤
Leµcτ2

∫

R
K2(y)e

µ|y|dy

β − cµ
|Φ−Ψ|µ .

Let

L′ =
L+β−d1+d1

∫

R
J1(y)e

µ|y|dy+Leµcτ1
∫

R
K1(y)e

µ|y|dy+Leµcτ2
∫

R
K2(y)e

µ|y|dy

β−cµ
,

then |P1(φ1, φ2)(ξ) − P1(ψ1, ψ2)(ξ)| e−µ|ξ| ≤ L′ |Φ− Ψ|µ and

sup
ξ∈R

|P1(φ1, φ2)(ξ) − P1(ψ1, ψ2)(ξ)| e
−µ|ξ| ≤ L′ |Φ−Ψ|µ .

After a similar discussion on P2, we obtain the continuity of P with respect to
|·|µ .

Moreover, from (F3), we can verify the equicontinuity of the mapping. By
the Ascoli-Arzela lemma, for any ε > 0 and B > 0, we can choose a subset
Γ′ of P (Γ) and Γ′ contains finite functions, such that the restriction of Γ′ on
[−B,B] is a finite ε−net of the restriction of P (Γ) on [−B,B] in the sense of
the supremum norm. In particular, let B > 0 be large such that

e−µB(m1 +m2) < ε,

then Γ′ is a finite ε−net of P (Γ) in the sense of |·|µ . The proof is complete. �

Note that Γ is nonempty and convex, and is bounded and closed with respect
to the norm |·|µ . By Schauder’s fixed point theorem and Lemmas 3.3 and 3.4,
we complete the proof of Theorem 3.2.
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4. Asymptotic behavior of traveling wave solutions

We now investigate the asymptotic behavior of traveling wave solutions.
Since the traveling wave solutions may be nonmonotonic, we cannot obtain
the asymptotic behavior by the monotonicity when ξ → ∞. To answer the
question, we first consider the corresponding functional differential equation of
(1.4) as follows

(4.1)











u′1(t) = f1(u1(t), u1(t− τ1), u2(t− τ2)),

u′2(t) = f2(u2(t), u1(t− τ3), u2(t− τ4)),

u1(s) = ψ1(s), u2(s) = ψ2(s), s ∈ [−τ, 0],

in which f1, f2 satisfy (F3)-(F4), and ψ1(s), ψ1(s) are continuous for s ∈ [−τ, 0].

Definition 4.1. [(r1(z), s1(z)), (r2(z), s2(z))] is a contracting rectangle of (4.1)
if

(C1) r1(z), s1(z) are continuous and strictly increasing while r2(z), s2(z) are
continuous and strictly decreasing for z ∈ [0, 1];

(C2) for z ∈ [0, 1],
{

r1(0) ≤ r1(z) ≤ r1(1) = e1 = r2(1) ≤ r2(z) ≤ r2(0),

s1(0) ≤ s1(z) ≤ s1(1) = e2 = s2(1) ≤ s2(z) ≤ s2(0);

(C3) if a1 = r1(z0) (a2 = s1(z0)) for any z0 ∈ (0, 1) and

r1(z0) ≤ b1 ≤ r2(z0), s1(z0) ≤ b2 ≤ s2(z0),

then f1(a1, b1, b2) > 0 (f2(a2, b1, b2) > 0); if a1 = r2(z0) (a2 = s2(z0))
for some z0 ∈ (0, 1) and

r1(z0) ≤ b1 ≤ r2(z0), s1(z0) ≤ b2 ≤ s2(z0),

then f1(a1, b1, b2) < 0 (f2(a2, b1, b2) < 0).

In Smith [19], we can find some convergence results of the initial value prob-
lem (4.1) via the technique of contracting rectangle. In what follows, we present
the asymptotic behavior of traveling wave solutions of (1.4) by the contracting
rectangle.

Theorem 4.2. Assume that (J1)-(J3), (K1)-(K4) and (F1)-(F4) hold. Let

Φ = (φ1, φ2) ∈ X[0,M] be a solution of (2.1) or be a fixed point of P. If
{

r1(z0) ≤ lim infξ→∞ φ1(ξ) ≤ lim supξ→∞
φ1(ξ) ≤ r2(z0),

s1(z0) ≤ lim infξ→∞ φ2(ξ) ≤ lim supξ→∞
φ2(ξ) ≤ s2(z0)

for some z0 ∈ (0, 1), where r1(z), s1(z), r2(z), s2(z) satisfy Definition 4.1. Then

lim
ξ→∞

(φ1(ξ), φ2(ξ)) = (e1, e2).
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Proof. Were the statement false, then there exists z1 ∈ [z0, 1) such that

r1(z1) ≤ lim inf
ξ→∞

φ1(ξ), lim sup
ξ→∞

φ1(ξ) ≤ r2(z1),

s1(z1) ≤ lim inf
ξ→∞

φ2(ξ), lim sup
ξ→∞

φ2(ξ) ≤ s2(z1)

and at least one of the following equalities is true:

r1(z1) = lim inf
ξ→∞

φ1(ξ), lim sup
ξ→∞

φ1(ξ) = r2(z1),

s1(z1) = lim inf
ξ→∞

φ2(ξ), lim sup
ξ→∞

φ2(ξ) = s2(z1).

Without loss of generality, we assume that

r1(z1) = lim inf
ξ→∞

φ1(ξ).

Letting ξ → ∞ and using the dominated convergence theorem in P1, we obtain

lim inf
ξ→∞

φ1(ξ)

≥
β lim infξ→∞ φ1(ξ)+f1(lim infξ→∞ φ1(ξ),lim supξ→∞ φ1(ξ),lim supξ→∞ φ1(ξ))

β

by the monotone condition (F1), the continuous condition (F3) and the defini-
tion of β. This further indicates that

f1

(

lim inf
ξ→∞

φ1(ξ), lim sup
ξ→∞

φ1(ξ), lim sup
ξ→∞

φ1(ξ)

)

≤ 0,

and a contradiction occurs from (C3). The proof is complete. �

In what follows, we shall give several remarks on the discussion in Sections
3-4.

Remark 4.3. The definition of contracting rectangle is independent of the mono-
tone condition in (F1), so we can apply the idea in Theorem 4.2 to other
monotone nonlinearities.

Remark 4.4. In Section 1, we have mentioned the form of invariance condition
(F2) depends on the monotone condition (F1). Moreover, the definition of
upper and lower solutions also depends on (F1). In particular, if the delayed
system (1.4) is quasimonotone, then we should replace (3.2) by



















F 1(ξ) = f1(φ1(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ)),

F 2(ξ) = f2(φ2(ξ), (K3 ∗ φ1)(ξ), (K4 ∗ φ2)(ξ)),

F 1(ξ) = f1(φ1
(ξ), (K1 ∗ φ1)(ξ), (K2 ∗ φ2)(ξ)),

F 2(ξ) = f2(φ2
(ξ), (K3 ∗ φ1)(ξ), (K4 ∗ φ2)(ξ)).

For other monotone condition, e.g., in the predator-prey system, we should
make necessary changes in the definition of upper and lower solutions (see Yu
and Yuan [25] and Zhang et al. [26] for some examples).
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Remark 4.5. Although Definition 4.1 is independent of the monotone condi-
tion, the verification of contracting rectangles often depends on the monotone
condition. For example, if (F1) holds, then we can replace f1(a1, b1, b2) > 0 by
f1(a1, r2(z0), s2(z0)) > 0 in Definition 4.1, which can simplify the verification.

Remark 4.6. τ can be any positive constant.

5. Applications

In this part, we investigate the existence/nonexistence of traveling wave
solutions of (1.4) with (1.6). Choose m1 = m2 = 2, we can verify that (F1)-
(F4) hold. We further assume that (J1)-(J3), (K1)-(K4) hold in this section.
Let

u1(x, t) = φ1(ξ), u2(x, t) = φ2(ξ), ξ = x+ ct

be a traveling wave solution of (1.4). Then

(5.1)

{

cφ′1(ξ) = d1[J1 ∗ φ1](ξ) + F1(φ1, φ2)(ξ), ξ ∈ R,

cφ′2(ξ) = d2[J2 ∗ φ2](ξ) + F2(φ1, φ2)(ξ), ξ ∈ R,

in which F1(φ1, φ2)(ξ), F2(φ1, φ2)(ξ) are defined by

F1(φ1, φ2)(ξ) = r1φ1(ξ)

(

1− φ1(ξ)− a1

∫

R

K1(y)φ1(ξ − y − cτ1)dy

−b1

∫

R

K2(y)φ2(ξ − y − cτ2)dy

)

,

F2(φ1, φ2)(ξ) = r2φ2(ξ)

(

1− φ2(ξ)− a2

∫

R

K3(y)φ1(ξ − y − cτ3)dy

−b2

∫

R

K4(y)φ2(ξ − y − cτ4)dy

)

.

For c > 0, λ > 0, define

Θ1(λ, c) = d1

[
∫

R

J1(y)e
λydy − 1

]

− cλ+ r1,

Θ2(λ, c) = d2

[
∫

R

J2(y)e
λydy − 1

]

− cλ+ r2.

Lemma 5.1. There exists c∗ > 0 such that

(R1) if c < c∗, then Θ1(λ, c) > 0 for any λ > 0 or Θ2(λ, c) > 0 for any

λ > 0;
(R2) if c > c∗, there exist positive constants λ1(c), λ3(c) such that

Θ1(λ, c)











= 0, λ = λ1(c), λ3(c),

< 0, λ ∈ (λ1(c), λ3(c)),

> 0, λ ∈ (0, λ1(c)
⋃

(λ3(c),+∞);
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(R3) if c > c∗, there exist positive constants λ2(c), λ4(c) such that

Θ1(λ, c)











= 0, λ = λ2(c), λ4(c),

< 0, λ ∈ (λ2(c), λ4(c)),

> 0, λ ∈ (0, λ2(c)
⋃

(λ4(c),+∞).

Theorem 5.2. For each c > c∗, (5.1) has a positive solution (φ1(ξ), φ2(ξ))
such that

0 < φi(ξ) < 1, ξ ∈ R, lim
ξ→−∞

φi(ξ)e
−λi(c)ξ = 1, i = 1, 2.

Proof. We now prove the existence of traveling wave solutions by Theorem 3.2.
Define

φi(ξ) = min{eλi(c)ξ, 1}, φ
i
(ξ) = max{eλi(c)ξ − qeλi(c)ξ, 0}, i = 1, 2, ξ ∈ R,

in which q > 1 and η > 1 such that

η ∈

(

1,min

{

λ1(c) + λ2(c)

λi(c)
,
λi+2(c)

λi(c)

})

, i = 1, 2.

Let q > 1 be

q = 1 +
r1 + r1a1

∫

R
K1(y)e

λ1(y)dy + r1b1
∫

R
K2(y)e

λ2(y)dy

−Θ1(ηλ1, c)

+
r2 + r2a2

∫

R
K3(y)e

λ1(y)dy + r2b2
∫

R
K4(y)e

λ2(y)dy

−Θ2(ηλ2, c)
,

then

(φ1(ξ), φ2(ξ)), (φ1
(ξ), φ

2
(ξ))

are a pair of upper and lower solutions of (5.1). The verification of the upper
and lower solutions of (5.1) is evident, and we omit the details here.

By what we have done, we obtain the existence of (φ1(ξ), φ2(ξ)), which is a
solution to (5.1). The limit behavior of (φ1(ξ), φ2(ξ)) is also clear. The proof
is complete. �

In particular, if

(5.2) a1 + b1 < 1, a2 + b2 < 1,

then (1.4) with (1.6) has a spatially homogeneous steady state defined by

K = (k1, k2) =:

(

1 + b2 − b1
(1 + a1)(1 + b2)− b1a2

,
1 + a1 − a2

(1 + a1)(1 + b2)− b1a2

)

.

Theorem 5.3. Assume that (5.2) holds. If (φ1(ξ), φ2(ξ)) is formulated by

Theorem 5.2, then (φ1(ξ), φ2(ξ)) also satisfies

lim
ξ→∞

(φ1(ξ), φ2(ξ)) = (k1, k2).
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Proof. We now prove the result by Theorem 4.2. Note that a traveling wave
solution φ1(ξ) is smooth enough such that u1(x, t) = φ1(ξ) also satisfies







∂u1(x, t)

∂t
≥ d1[J1 ∗ u1](x, t) + r1u1(x, t)[1 − a1 − b1 − u1(x, t)],

u1(x, 0) = φ1(x) > 0, x ∈ R,

and






∂u1(x, t)

∂t
≤ d1[J1 ∗ u1](x, t) + r1u1(x, t)[1 − u1(x, t)],

u1(x, 0) = φ1(x) > 0, x ∈ R,

then Lemmas 2.2 and 2.4 imply that

1 ≥ lim sup
t→∞

u1(0, t) ≥ lim inf
t→∞

u1(0, t) ≥ 1− a1 − b1 > 0,

which further leads to

1 ≥ lim sup
ξ→∞

φ1(ξ) ≥ lim inf
ξ→∞

φ1(ξ) ≥ 1− a1 − b1 > 0.

In a similar way, we have

1 ≥ lim sup
ξ→∞

φ2(ξ) ≥ lim inf
ξ→∞

φ2(ξ) ≥ 1− a2 − b2 > 0.

Let
8ǫ = min{1− a1 − b1, 1− a2 − b2},

and define

r1(z) = zk1, r2(z) = zk1 + (1− z)(1 + ǫ),

s1(z) = zk2, s2(z) = zk2 + (1− z)(1 + ǫ)

for z ∈ [0, 1]. By Smith [19, Section 5.7], we obtain a contracting rectangle of
{

u′1(t) = r1u1(t)[1 − u1(t)− a1u1(t− τ1)− b1u2(t− τ2)],

u′2(t) = r2u2(t)[1 − u1(t)− a2u1(t− τ3)− b2u2(t− τ4)],

and there exists z1 ∈ (0, 1) such that

0 < r1(z1) < 1− a1 − b1 < 1 < r2(z1),

0 < s1(z1) < 1− a1 − b1 < 1 < s2(z1).

From Theorem 4.2, the proof is complete. �

We now consider the nonexistence of traveling wave solutions by the idea in
Lin and Ruan [12], and we first present the main conclusion as follows.

Theorem 5.4. If c < c∗, then (5.1) has no positive solution (φ1(ξ), φ2(ξ))
satisfying

(0, 0) ≪ (φ1(ξ), φ2(ξ)) ≤ (1, 1)

and

lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = (0, 0), lim inf
ξ→∞

(φ1(ξ), φ2(ξ)) ≫ (0, 0).
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Proof. Were the statement false, then there exists some c1 < c∗ such that (5.1)
has a strictly positive solution (φ1(ξ), φ2(ξ)) satisfying the restrictions in the
theorem. Without loss of generality, we assume that

Θ1(λ, (c1 + c∗)/2) > 0, λ ∈ (0,∞).

Let

Θ′

1(λ, c) = d1

[
∫

R

J1(y)e
λydy − 1

]

− cλ+ r1[1− ε]

with ε > 0, then there exists

ε0 ∈ (0,min{1− a1 − b1, 1− a2 − b2})

such that for all ε ∈ (0, ε0], we have

Θ′

1(λ, (c1 + c∗)/2) > 0, λ ∈ (0,∞).

Choose ξ0 ∈ R,M > 0 such that

φ1(ξ) <
ε0
2
, ξ < ξ0, φ1(ξ0) =

ε0
2
,

and
∫ M−cτ1−cτ2

−M+cτ1+cτ2

K1(y) > 1−
ε0
8
,

∫ M−cτ1−cτ2

−M+cτ1+cτ2

K2(y) > 1−
ε0
8
.

Consider φ1(ξ) for ξ ∈ [ξ0−M, ξ0], then the continuity and the positivity imply
that there exists N > 1 such that

φ1(ξ) >
ε0
N
, ξ ∈ [ξ0 −M, ξ0].

Moreover, let N > 1 also satisfy

φ1(ξ) >
ε0
N
, φ2(ξ) >

ε0
N
, ξ ∈ [ξ0 −M,∞).

By the limit behavior of ξ → ∞, we see that N is admissible.
If ξ ≤ ξ0 −M, then

1−φ1(ξ)−a1

∫

R

K1(y)φ1(ξ−y−cτ1)dy−b1

∫

R

K2(y)φ2(ξ−y−cτ2)dy ≥ 1−ε0.

For ξ > ξ0 −M, we have

1− φ1(ξ)− a1

∫

R

K1(y)φ1(ξ − y − cτ1)dy − b1

∫

R

K2(y)φ2(ξ − y − cτ2)dy

≥ 1−
ε0
2

−

(

1 + (a1 + b1)
N

ε0

)

φ1(ξ).

Therefore, φ1(ξ), φ2(ξ) satisfies

1− φ1(ξ)− a1

∫

R

K1(y)φ1(ξ − y − cτ1)dy − b1

∫

R

K2(y)φ2(ξ − y − cτ2)dy

≥ 1− ε0 −

(

1 + (a1 + b1)
N

ε0

)

φ1(ξ), ξ ∈ R,
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and so φ1(ξ) = u1(x, t) leads to






∂u1(x, t)

∂t
≥ d1[J1 ∗ u1](x, t)+r1u1(x, t)

[

1− ε0−
(

1 + (a1 + b1)
N
ε0

)

u1(x, t)
]

,

u1(x, 0) = φ1(x) > 0.

From Lemmas 2.2 and 2.4, we obtain

lim inf
t→∞

inf
2|x|=(c′+c∗)t

u1(x, t) ≥
1− ε0

1 + (a1 + b1)
N
ε0

> 0.

Let −2x = (c′ + c∗)t. Then

ξ = x+ c1t→ −∞, t→ ∞

and

lim
ξ→−∞

φ1(ξ) = lim
t→∞

u1(−(c′ + c∗)t/2, t) = 0,

which implies a contradiction. The proof is complete. �
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