• Title/Summary/Keyword: spread parameter

Search Result 122, Processing Time 0.023 seconds

Assessment of New Design Wave by Spread Parameter and Expected Sliding Distance of Caisson Breakwater (확산모수와 제이슨방파제 기대활동량을 이용한 개정 설계파 분석)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2007
  • Extreme value distributions for new deep sea wave were analyzed by using spread parameter and correlations between spread parameter and sliding distance of caisson breakwater were shown in numerical example. When spread parameter is larger than as usual, there occurred extra-ordinarily large wave height among 50 annual maximum significant waves generated by extreme value distribution. Spread parameter of new design wave is identified to be comparably larger than some foreign coastal areas and may cause large sliding displacement though deterministic safety factor for sliding is satisfied with enough margin.

Characteristics of Spread Parameter of the Extreme Wave Height Distribution around Korean Marginal Seas (한국 연안 극치 파고 분포의 확산모수 특성)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Kim, Tae-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.480-494
    • /
    • 2009
  • Long term extreme wave data are essential for planning and designing coastal structures. Since the availability of the field data for the waters around Korean peninsula is limited to provide a reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. KORDI(2005) has proposed extreme wave data at 106 stations off the Korean coast from 1979 to 2003. In this paper, extreme data sets of wave(KORDI, 2005) have been analyzed for best-fitting distribution functions, for which the spread parameter proposed by Goda(2004) is evaluated. The calculated values of the spread parameter are in good agreement with the values based on method of moment for parameter estimation. However, the spread parameter of extreme wave data has a representative value ranging from about 1.0 to 2.8 which is larger than some foreign coastal waters, it is necessary to review deep water design wave.

A Fire Hazard Assessment of Interior Finish Materials (건물 내장재의 화재위험성 평가 방법)

  • 김운형
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-28
    • /
    • 1998
  • To propose a new fire hazard assessment criteria of interior finish materials, the properties and incident heat flux of interior finish materials in a compartment fires are investigated and compared by using flame spread model developed by Quintiere. The properties considered on which fire growth depend are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. ISO Room Corner Test(9705) is applied in the model and the time for total energy release rate to reach 1MW is examined. The results are compared for the 24 different materials tested by EUREFIC. Dimensionless parameter a, b and ${\gamma}$b are used to develope a new method in which fire hazard of interior finish materials can be classified resulting from correlation between b and flashover time. Results show that if b greater than about zero, flashover time in the ISO Room-Corner Test is principally proportional to ignition time only.

  • PDF

Time-frequency Analysis of Vibroarthrographic Signals for Non-invasive Diagnosis of Articular Pathology (비침습적 관절질환 진단을 위한 관절음의 시주파수 분석)

  • Kim, Keo-Sik;Song, Chul-Gyu;Seo, Jeong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.729-734
    • /
    • 2008
  • Vibroarthrographic(VAG) signals, emitted by human knee joints, are non-stationary and multi-component in nature and time-frequency distributions(TFD) provide powerful means to analyze such signals. The objective of this paper is to classify VAG signals, generated during joint movement, into two groups(normal and patient group) using the characteristic parameters extracted by time-frequency transform, and to evaluate the classification accuracy. Noise within TFD was reduced by singular value decomposition and back-propagation neural network(BPNN) was used for classifying VAG signals. The characteristic parameters consist of the energy parameter, energy spread parameter, frequency parameter, frequency spread parameter by Wigner-Ville distribution and the amplitude of frequency distribution, the mean and the median frequency by fast Fourier transform. Totally 1408 segments(normal 1031, patient 377) were used for training and evaluating BPNN. As a result, the average value of the classification accuracy was 92.3(standard deviation ${\pm}0.9$)%. The proposed method was independent of clinical information, and showed good potential for non-invasive diagnosis and monitoring of joint disorders such as osteoarthritis and chondromalacia patella.

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

Estimation and Analysis of MIMO Channel Parameters using the SAGE Algorithm (SAGE 알고리즘을 이용한 MIMO 채널 파라미터 추정과 분석)

  • Kim, Joo-Seok;Yeo, Bong-Gu;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.79-84
    • /
    • 2017
  • This paper is a multi-input multi-path (Multiple-input multiple-output: MIMO) using a space-alternating generalized expectation maximization(SAGE) algorithm in the parameter channel and determine the channel estimation performance. Estimated by the algorithm, SAGE time-varying channel environment, the channel parameters estimated from the parameters of the channel measured in the island region 781 of the band in order to compare the performance and compares the original data. This allows you to check the performance of the algorithm SAGE and is highly stable to delay spread (Delay Spread), the diffusion angle of arrival (Arrive of Angular Spread) performance in terms of accuracy down through the SAGE algorithm for estimating a more general calculation parameters.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

A Room-Corner Fire Model을 적용한 건축내장재의 화재확산 특성 평가(1)

  • Kim, Un-Hyeong
    • Fire Protection Technology
    • /
    • s.24
    • /
    • pp.32-39
    • /
    • 1998
  • A room-corner fire scenario of ISO 9705 with flame spread model developed by Quintiere is applied to the interior finish materials to show the sensitivity of properties derived from AST, E-1321 and ASTM E-1354 is investigated and various range of thermal properties by the author were analyzed in the model. There are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The time for total energy release rate to reach 1MW is examined. Though some areas are neede for improvements, The model appears to predict good results with all the range of input properties and could be

  • PDF

Channel Correlation Analysis using MIMO Channel Measurement Parameters at Domestic 700MHz band (국내 700 MHz 대역에서 MIMO 채널 측정 파라미터를 이용한 채널 상관도 분석)

  • Jung, Myoung-Won;Chong, Young-Jun;Pack, Jeong-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • In the next generation of mobile communication systems, high data rates and high capacity will be possible if multiple antennas are used at new frequencies. This paper presents the correlations between channel parameter path loss (PL), delay spread (DS), angular spread (AS) and K-factor established based on channel measurements. To avoid interference from Korean DTV broadcasting, we measured the channel characteristics in urban/rural/suburban areas on Jeju Island using a channel sounder and $4{\times}4$ antennas. The correlations between channel parameter show that the wireless channel characteristics can be determined and effective communication system design can be produced for use in similar environments.

Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation

  • Hung, Hsiao-Hui;Liu, Kuang-Yen;Chang, Kuo-Chun
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1001-1024
    • /
    • 2014
  • The size of spread footings was found to be unnecessarily large from some actual engineering practices constructed in Taiwan, due to the strict design provisions related to footing uplift. According to the earlier design code in Taiwan, the footing uplift involving separation of footing from subsoil was permitted to be only up to one-half of the foundation base area, as the applied moment reaches the value of plastic moment capacity of the column. The reason for this provision was that rocking of spread footings was not a favorable mechanism. However, recent research has indicated that rocking itself may not be detrimental to seismic performance and, in fact, may act as a form of seismic isolation mechanism. In order to clarify the effects of the relative strength between column and foundation on the rocking behavior of a column, six circular reinforced concrete (RC) columns were designed and constructed and a series of rocking experiments were performed. During the tests, columns rested on a rubber pad to allow rocking to take place. Experimental variables included the dimensions of the footings, the strength and ductility capacity of the columns and the intensity of the applied earthquake. Experimental data for the six circular RC columns subjected to quasi-static and pseudo-dynamic loading are presented. Results of each cyclic loading test are compared against the benchmark test with fixed-base conditions. By comparing the experimental responses of the specimens with different design details, a key parameter of rocking behavior related to footing size and column strength is identified. For a properly designed column with the parameter higher than 1, the beneficial effects of rocking in reducing ductility and the strength demand of columns is verified.