• 제목/요약/키워드: sprayed-coating

검색결과 327건 처리시간 0.03초

지르코니아 충전이 지르코니아계 용사코팅층의 마모마찰에 미치는 영향 (Effect of Sealing Process on the Tribological Behavior of the Plasma Spray Zirconia Based Coatings)

  • 신종한;임대순;안효석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.265-271
    • /
    • 1998
  • High temperature wear behavior of plasma sprayed zirconia based coating sealing with zirconia sol were investigated for high temperature wear resistance application. The zirconia powders containing 2.5, 5.0, 7.5, 10.0 mol% of MoS$_2$, $Fe_2O_3$ for plasma spray were made by spray drying method. As-sprayed coating was sealed by zirconia-sol to fill up the pore and crack in coating. wear test were performed at temperature ranges from room temperature to 600$\circ$C. The microstructural changes of before and after sealing process were examined by SEM, XRD and EPMA. After sealing process, the porosity was decreased and micro-hardness was increased. The wear properties of coating after sealing process were improved by sealing of pores and cracks. The behavior of wear amount and coefficient of friction were same tendency to before sealing process.

  • PDF

Laboratory Evaluation of Select Methods of Corrosion Prevention in Reinforced Concrete Bridges

  • Pritzl, Matthew D.;Tabatabai, Habib;Ghorbanpoor, Al
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권3호
    • /
    • pp.201-212
    • /
    • 2014
  • Sixteen reinforced concrete laboratory specimens were used to evaluate a number of corrosion prevention methods under an accelerated (6 months) testing program. The use of galvanic thermal sprayed zinc, galvanic embedded anodes, a tri-silane sealer, an acrylic coating, and an epoxy/polyurethane coating was evaluated. The specimens received various treatments prior to exposure to accelerated corrosion. The performance of the treatments was evaluated with respect to corrosion currents, chloride ingress, extent of cracking, severity of rust staining, and visual inspection of the reinforcing steel after the conclusion of testing and dissection. Results indicated that the tri-silane sealer, the conjoint use of galvanic thermal sprayed zinc and epoxy/polyurethane coating, the epoxy/polyurethane coating, and acrylic coating performed better than the other methods tested. Higher chloride concentrations were measured in the vicinity of embedded zinc anodes.

탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성 (Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process)

  • 강기철;;이창희
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.

STS316 용사코팅의 최적 공정 설계 (Process Optimization of Thermal-sprayed STS316 Coating)

  • 김균택;김영식
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.161-165
    • /
    • 2010
  • In the present study, process optimization for thermal-sprayed STS316 coating has been performed using $L_9(3^4)$ orthogonal array and analysis of variance (ANOVA). STS316 coatings were fabricated by flame spray process on steel substrate, and the hardness test and microstructure observation of the coatings were studied. The results of hardness test were analyzed by ANOVA. The ANOVA results showed that the spray distance had the greatest effect on hardness of the coating, on the other hands, the effects of oxygen gas flow and spray distance were ignorable. From these results, the optimal combination of the flame spray parameters could be derived, and confirmation experiment was carried out to verify these derived results. The calculated hardness of the coatings by ANOVA was found to approximately close to that of confirmation experimental result. Thus, it was considered that design of experiments using orthogonal array and ANOVA was effective for process optimization of thermal-sprayed STS316 coating.

실험계획법에 의한 니켈기 경질 용사코팅의 최적 공정 설계 (Process Optimization for Thermal-sprayed Ni-based Hard Coating by Design of Experiments)

  • 김균택;김영식
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.89-94
    • /
    • 2009
  • In this work, the optimal process has been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA) for thermal-sprayed Ni-based hard coating. Ni-based hard coatings were fabricated by flame spray process on steel substrate. Then, the hardness test and observation of microstructure of the coatings were performed. The results of hardness test were analyzed by ANOVA. The ANOVA results demonstrated that the acetylene gas flow had the greatest effect on hardness of the coatings. The oxygen gas flow was found to have a neglecting effect. From these results, the optimal combination of the flame spray parameters could be predicted. The calculated hardness of the coatings by ANOVA was found to lie close to that of confirmation experimental result. Thus, it was considered that design of experiments design using orthogonal array and ANOVA was useful to determine optimal process of thermal-sprayed Ni-based hard coating.

  • PDF

Warm Spray 공정과 Cu-Ga 및 Cu-In 혼합 분말을 이용한 CGI계 복합 코팅층의 제조 및 특성 (Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders)

  • 전민광;이명주;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.229-234
    • /
    • 2014
  • This study manufactured a CIG-based composite coating layer utilizing a new warm spray process, and a mixed powder of Cu-20at.%Ga and Cu-20at.%In. In order to obtain the mixed powder with desired composition, the Cu-20at.%Ga and Cu-20at.%In powders were mixed with a 7:1 ratio. The mixed powder had an average particle size of $35.4{\mu}m$. Through the utilization of a warm spray process, a CIG-based composite coating layer of $180{\mu}m$ thickness could be manufactured on a pure Al matrix. To analyze the microstructure and phase, the warm sprayed coating layer underwent XRD, SEM/EDS and EMPA analyses. In addition, to improve the physical properties of the coating layer, an annealing heat treatment was conducted at temperatures of $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ for 1 hour each. The microstructure analysis identified ${\alpha}$-Cu, $Cu_4In$ and $Cu_3Ga$ phases in the early mixed powder, while $Cu_4In$ disappeared, and additional $Cu_9In_4$ and $Cu_9Ga_4$ phases were identified in the warm sprayed coating layer. Porosity after annealing heat treatment reduced from 0.75% (warm sprayed coating layer) to 0.6% (after $600^{\circ}C/1hr$. heat treatment), and hardness reduced from 288 Hv to 190 Hv. No significant phase changes were found after annealing heat treatment.

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Using scratch test to evaluate cohesive bond strength of Mo composite coating

  • Koiprasert, Hathaipat;Thaiwatthana, Sirinee;Sheppard, Panadda
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.34-41
    • /
    • 2015
  • Bonding strength of a thermal sprayed coating is difficult to measure using a conventional pull-off test method. Scratch test is a potential alternative testing method. An adhesive and a cohesive bond strength of the coating can be measured by the pull-off test while the scratch test performed on the cross-section of the thermal sprayed coating can only demonstrate the cohesive bond strength of the coating. Nevertheless, it is still beneficial to perform the scratch testing on the cross-section of the coating for the sake of comparison thus providing an alternative to the pull-off test. The scratch test method can reduce testing time and cost in the long run due to a significant cost reduction in consumables and energy and time saving from the curing step of the glue used in the pull-off test. This research investigates the possibility of using the scratch test to measure the cohesive bond strength of Mo/NiCrBSi composite coating. The results from the pull-off test and the scratch test indicate that the cohesive bond strengths of the Mo composite coating show similar trend and that the cohesive bond strength are increased when increasing NiCrBSi content.

진공 열 플라즈마 용사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅 형성 (Vacuum Plasma Sprayed NiTiZrSiSn Coating)

  • 윤상훈;김준섭;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.42-48
    • /
    • 2007
  • An inert gas atomized NiTiZrSiSn bulk metallic glass feedstock was sprayed onto the copper plate using vacuum plasma spraying process. In order to change the in-flight particle energy, that is, thermal energy, the hydrogen gas flow rate in plasma gas mixture was increased at the constant flow rate of argon gas. Coating and single pass spraying bead were produced with the least feeding rate. Regardless of the plasma gas composition, fully melted through unmelted particle could be observed on the overlay coating. However, the frequency of the unmelted particle number density was increased with the decrease of the hydrogen gas flow rate. The amorphous phase fraction within coating was also affected by the number density of the unmelted particle.

접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향에 관한 연구 (A Study on the Effect of the Thickness of Bond Coating on the Thermal Stresses of a Sprayed Thermal Barrier Coating)

  • 김형남
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.221-227
    • /
    • 2001
  • Based on the principle of complementary energy, an analytical method is developed which focuses on the end effects for determining thermal stress distributions in a three-layered beam. This method gives the stress distributions which completely satisfy the stress-free boundary conditions. A numerical example is given in order to verify this method. The results show that the present analytical solutions have the values of stress in excellent agreement with the solutions derived by other investigators. Using this method, the effects of the thickness of bond coat on the thermal stresses of a typical sprayed thermal barrier coating, which consists of IN738LC substrate, MCrAIY bond coat and ZrO$_2$-8wt%Y$_2$O$_3$top coat, were investigated.

  • PDF