• Title/Summary/Keyword: spray characteristics

Search Result 1,881, Processing Time 0.028 seconds

Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System (박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구)

  • Jang, Jaehwan;Park, Hyunchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • Among various De-NOx technologies, Urea-based Selective Catalytic Reduction (SCR) systems are known to be the most effective in marine diesel applications. The spraying and mixing behavior of the urea-water solution has a decisive effect on the system's net efficiency. Therefore, in this study, the spray behavior and ammonia uniformity with and without a static mixer were analyzed by CFD in order to optimize the SCR system. The results showed that the static mixer significantly affected the uniformity of velocity and ammonia concentration. Static mixers may be especially suited for marine SCR systems with space constraints.

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

Study on Ni-Cr Electro Plating Process for Staged Combustion Cycle Engine (다단연소사이클 엔진 적용을 위한 Ni-Cr 코팅에 관한 연구)

  • Bae, Byung-Hyun;Hwang, Yang-Jin;Lee, Kyu-Hwan;Rhee, Byong-ho;Han, Yeoung-Min;Kim, Young-June;Noh, Yong-Oh;Cho, Hwang-Rae;Hyun, Seong-Yoon;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.857-863
    • /
    • 2017
  • In this paper, the process of electro Ni and electro Cr plating is studied for the purpose of thermal barrier to protect the inner wall combustion chamber. The chamber is under the environment of very high temperature and high pressure when propellants burn in there. As one of the thermal barrier coatings, Zr-based thermal spray coating has been applied to the chamber. However, peeling of coating layer can occur under such a hard condition because of the difference of thermal expansion coefficients between the ceramic and the metallic wall. We study the characteristics of Ni-Cr coating and establish its process. It is found that the thickness of over $100{\mu}m$ of Ni and Cr coating layers with the uniformity of ${\pm}10%$ can be obtained with the used of as-developed plating bath.

  • PDF

Finite Element Analysis of Hot Strip Rolling Process (열간박판압연공정의 유한요소해석)

  • 강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.829-837
    • /
    • 1992
  • This paper presents a new approach for the analysis of hot strip rolling processes. The approach is based on the finite element method and capable of predicting velocity field in the strip, temperature field in the strip, temperature field in the roll, and roll pressure. Basic finite element formulations for heat transfer analysis are described with emphasis on the treatment of numerical instability resulting from a standard Galerkin formulation. Comparison with the theoretical solutions found in the literature is made for the evaluation of the accuracy of the temperature solutions. An iterative scheme is developed for dealing with strong correlations between the metal flow characteristics and the thermal behavior of the roll-strip system. A series of process simulations are carried out to investigate the effect of various process parameters including interface friction, interface heat transfer coefficient, roll speed, reduction in thickness, and spray zone. The results are shown and discussed.

STUDY OF CORRELATION BETWEEN WETTED FUEL FOOTPRINTS ON COMBUSTION CHAMBER WALLS AND UBHC IN ENGINE START PROCESSES

  • KIM H.;YOON S.;LAI M.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.437-444
    • /
    • 2005
  • Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and 'footprint' of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber. The spray and targeting performance were characterized using high-speed visualization and Phase Doppler Interferometry techniques. The fuel droplets impinging on the port, cylinder wall and piston top were characterized using a color imaging technique during simulated engine start-up from room temperature. Highly absorbent filter paper was placed around the circumference of the cylinder liner and on the piston top to collect fuel droplets during the intake strokes. A small amount of colored dye, which dissolves completely in gasoline, was used as the tracer. Color density on the paper, which is correlated with the amount of fuel deposited and its distribution on the cylinder wall, was measured using image analysis. The results show that by comparing the locations of the wetted footprints and their color intensities, the influence of fuel injection and engine conditions can be qualitatively and quantitatively examined. Fast FID measurements of UBHC were also performed on the engine for correlation to the mixture formation results.

Analysis of a Double Pipe Heat Exchanger for Waste Solvent Recovery (폐용제 회수용 이중관형 열교환기 특성 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.13-21
    • /
    • 2000
  • This study describes to analyze the heat transfer characteristics of waste solvent recovery system using a double pipe heat exchanger heating solvent by the hot oil. The solvent recovery system consists of the feeding pump, the double pipe heat exchanger, the vacuum spray chamber, and the condenser. A double pipe heat exchanger consists of the first section to conduct the heating of solvent to the thermal saturated point and the second section to evaporate the saturated solvent. The heat transfer area for vaporization of water, benzene and alkylbenzene was predicted by the heat balance modelling and experimentally measured from the temperature distribution as a function of solvent flow rate and heating temperature. The required heat transfer area for vaporization was increased with increasing solvent flow rates and with decreasing heating temperatures due to decreased quantity of transferred heat per the unit area. Theoretical modelling of the heat transfer area for solvents vaporization in the pipe showed good agreement with experimental results. Results showed to be suitable for the waste solvent recovery using a double pipe heat exchanger.

  • PDF

An Study on Spray and Combustion Characteristics of Direct Injection LPG under Low Pressure Injection Condition (저압 분사조건에 따른 직접분사 LPG의 분무 및 연소특성 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk;Lee, Jin-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • Liquefied petroleum gas is regarded as a promising alternative fuel as it is eco-friendly, has good energy efficiency and output performance, practically and has high cost competitiveness over competing fuels. In spark-ignition engine, direct injection technology improves engine volumetric efficiency apparently and operates engine using the stratified charge that has relatively higher combustion efficiency. This study designed a combustion chamber equipped with visualization system by applying gasoline direct injection engine principle. In doing so, the study recorded and analyzed ignition probability and flame propagation process of spark-ignited direct injection LPG in a digital way. The result can contribute as a basic resource widespread for spark-ignited direct injection LPG engine design and optimization extensively.

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

Design of Reduced Shear Stress with High-Viscosity Flow Using Characteristics of Thin Film Flow on Solid Surfaces (완전접촉 경계면 위의 박막유동 특성을 이용한 고점도 전단유동에 따른 표면응력 감소 설계)

  • Park, Boo Seong;Kim, Bo Hung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1027-1034
    • /
    • 2014
  • The shear stress on a surface due to the thin film fluid flow is an important issue. In case of a rotating disk, the fluid is delivered to the edge of the disk by centrifugal force, which acts as a body force on the fluid. Wear of a surface is affected by the shear stress acting on the surface and curvature. In this study, we utilize computational fluid dynamics software to model the ratio of curvature and local shear stress on solid surfaces. The key goal of the study is to determine an optimized curvature for the thin film fluid flow on a solid surface in order to minimize the local shear stress affecting the wear of this surface. Our results on the effects of curvature will be utilized for the design of devices that utilize thin film fluid flow on a solid surface, such as rotating-disk spray systems and thin film coating.

Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler (촉매삽입형 Urea-SCR 머플러 다공튜브 형상변화에 따른 NOx 저감 특성에 관한 연구)

  • Moon, Namsoo;Lee, Sangkyoo;Ko, Sangchul;Lee, Jeekeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1017-1026
    • /
    • 2014
  • A multi-perforated tube is generally installed between the muffler inlet and in front of selective catalytic reduction (SCR) catalysts in the integrated urea-SCR muffler system in order to disperse the urea-water solution spray uniformly and to make better use of the SCR catalyst, which would result in an increase nitrogen oxide ($NO_x$) reduction efficiency and a decrease in the ammonia slip. The effects of the multi-perforated tube orifice area ratios on the internal flow characteristics were investigated analytically by using a general-purpose commercial software package. From the results, it was clarified that the multi-perforated tube geometry sensitively affected the generation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst. To verify the analytical results, engine tests were carried out in the ESC and ETC modes. Results of these tests indicated that the larger flow model in the longitudinal direction showed the highest NOx reduction efficiency, which was a good agreement with the analytical results.