• 제목/요약/키워드: spray angle

검색결과 556건 처리시간 0.034초

Dual Swirl Injector Recess 길이에 따른 분산각 평가 (A Study on Spray Angle of Dual Swirl Injector with Different Recess Length)

  • 박희호;김태한;김유
    • 한국추진공학회지
    • /
    • 제7권3호
    • /
    • pp.30-37
    • /
    • 2003
  • Swirl 인젝터는 유체가 접선방향의 주입구를 통해 주입되어 인젝터 내부에서 접선방향 속도와 축방향 속도를 갖고 흐르다 노즐에서는 속도성분비에 의해 결정된 분산각에 따라 흐른다. 이러한 분산각은 특히 이중 swirl 인젝터에서 두 유체가 분무되어 서로 간섭을 주고 특히 recess가 있는 경우 내부 혼합 등의 이유로 예측이 어렵다. 이러한 분산각 현상을 recess 길이별로 실험을 통하여 규명하고 또한 상용 열수력 해석 코드인 FLUENT Version6.0을 사용하여 수치해석하였다. 다상유동 해석 모델중 VOF (Volume Of Fluid)모델을 사용하여 모사하고 실험결과와 비교하여 적용 타당성을 확인하였으며, recess가 단독 분사시와 혼합 분사시 분산각에 미치는 영향에 대하여 분석하였다.

Spray Characteristics in CI Engines Fuelled with Vegetable Oils and Its Derivatives

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.15-26
    • /
    • 2011
  • In this article, spray characteristics in CI engines fuelled with vegetable oils and its derivatives will be reviewed. Of edible vegetable oils, soybean oil and rapeseed oil were mainly investigated. Of inedible vegetable oils, jatropha oil and used frying oil were main concern on the research on the spray characteristics in CI engine. Spray angle and spray penetration were mainly examined among the macroscopic spray characteristics and Sauter mean diameter was only investigated among the microscopic spray characteristics. There exist six different definitions of spray angle which should be examined. Neat vegetable oil and biodiesel fuels show smaller spray angle than diesel fuel. Biodiesel fuel and vegetable oils and its blend have a longer spray penetration than diesel fuel. However, biodiesel blends with diesel shows the similar spray penetration with diesel fuel. SMDs in the biodiesel spray, vegetable oils and its blends spray are higher than that in the diesel spray.

압력선회노즐에서 물-기름 유화연료의 분무특성 (Spray Charateristics of Water/Oil Emulsified Fuel in Pressure-Swirl Nozzle)

  • 임정현;노수영
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.5-12
    • /
    • 2000
  • The beneficial aspects of applying emulsion fuels to combustion systems may be due to the changes of fuel properties which lead to the enhanced atomization characteristics. The spray characteristics of water/oil emulsified fuel injected from the pressure-swirl(simplex) atomizer using for oil burner were investigated. Four different water contents from 10 to 40 % by volume at 10% increment were prepared by mixing with the different contents of surfactants. Total amount of surfactant used was varied from 1 to 3 % by volume. This study demonstrates the influence of water and surfactant contents of emulsified fuel, injection pressure on the spray characteristics, i.e. Sauter mean diameter(SMD) and spray angle. The drop size distribution of the emulsified fuel spray was measured with a Malvem particle sizer. In order to measure the spray angle, the digital image processing was employed by capturing multiple images of the spray with 3-CCD digital video camera. It was evident that the addition of water and surfactant changes fuel properties which are the key parameters influencing the atomization of the spray. The increase in surfactant content results in the decrease of SMD and the increase in spray angle. The droplets decease with increase in injection pressure, but the influence of injection pressure in this experimental condition was less important than expected. The more viscous fuel with the increase of water content exhibits the larger droplets in the centerline of the spray, and the less viscous fuel in the outer edges of the spray. The increase in axial position from the nozzle causes the spray angle to decrease. The spray angle decreases with increase in water content. This is due to increase in viscosity with increase in water content.

  • PDF

벽면에 충돌하는 가솔린 분무의 특성에 관한 연구 (A study on the characteristics of gasoline spray to impinge on wall)

  • 이규영
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.17-23
    • /
    • 2005
  • Even though a relatively complete knowledge base has been established for diesel sprays, much of the knowledge cannot be directly translated to correlate the characteristics of gasoline spray. The macroscopic characteristics of gasoline impingement spray was investigated with photographic and image processing technique by Particle Motion Analysis System. The injector with single hole nozzle diameter of 0.28 mm was used in this experiment and the injection duration was selected as 10 msec. The injection pressure with 0.3, 0.35, and 0.4 MPa, impingement distance or 70, 100 and 130m, impingement angle or 0.15, 30 and $45^{\circ}$ were employed for the variables to affect the spray characteristics of impinging spray. It is clear that there is the analogy on the spray tip penetration between the gasoline impinging jet and diesel free jet. The spray tip penetration of impinging gasoline spray is proportional to the quarter power of the time after start of injection. The maximum height of impinging gasoline spray is also proportional to the quarter power of the time regardless of impingement distance, impingement angle and injection pressure. In addition, the effect of impingement angle on the spray tip penetration is significant according to the time after start of injection, even though there is minor effect in the initial stage of time after start of injection. Moreover, there is no remarkable effect of injection pressure on the spray tip Penetration under the experimental condition used in this study.

  • PDF

단순 와류 분무 노즐에서 분사되는 중공 원추형 액막의 분무각 (Spray Angle of Hollow Cone Liquid Sheet Discharged from Simplex Swirl Spray Nozzle)

  • 고광웅;이상용
    • 한국분무공학회지
    • /
    • 제7권4호
    • /
    • pp.1-8
    • /
    • 2002
  • This paper investigates the spray angle and the outline shape of the liquid sheet discharged from a simplex swirl nozzle. A theoretical model was proposed and the corresponding experimental data were presented for comparison. Axial and tangential velocities and thickness of the liquid sheet at the nozzle exit were also predicted. The liquid sheet thickness at nozzle exit, as well as the discharge coefficient, turned out to be a sole function of the swirl Reynolds number. However, the axial and tangential velocities at nozzle exit and the spray angle could not be expressed only with the swirl Reynolds number. The predicted outline shape and spray angle of the liquid sheet agreed reasonably with the measured data.

  • PDF

노즐 내부 스월러각과 스월실 형상비 변화가 분무특성에 미치는 영향 (Effect of Internal Swirler Angle and Swirl Chamber Aspect Ratio of Nozzle on Spray Characteristics)

  • 김영진;정홍철;정지원;김덕줄
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.39-45
    • /
    • 2003
  • The Objective of this study is to investigate the effect of internal swiller angle and swirl chamber aspect ratio of nozzle on spray characteristics for application of spray system in micro fabrication process. The macro-spray characterictics such as the spray angle and breakup process were obtained by photographs illustrating atomization. The micro-spray characteristics such as droplet size and axial velocity were measured by using PDA with swirler angle and swirl chamber aspect ratio. The swiller angles were $13.5^{\circ},\;27^{\circ},\;and\;40.5^{\circ}$. The swirl chamber aspect ratios were 1.2, 1.6, and 2.0. It was found that the smaller swirl chamber aspect ratio was, the larger axial velocity and drop size were.

  • PDF

노즐이 내부형상이 이중분무의 유속과 입경에 미치는 영향 (Effect of Internal Geometry of Nozzle on the Velocity and Droplet Size of Twin Spray)

  • 김영진;정지원;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1522-1527
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and swirl chamber aspect ration of nozzle on the characteristics of single and twin spray. The performances of nozzle has been investigated by measurements of spray angle, droplet size, velocity and Weber number at a water pressure 0.4MHz. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the smaller swirler angle, the larger axial velocity became. It was also shown that the larger aspect ratio, the smaller droplet diameter became.

  • PDF

충돌면 경사각도 변화에 따른 분무특성 (Spray Characteristics Depending Upon Impaction Land Surface Angle Variations)

  • 김재휘;김진환;박권하
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.63-71
    • /
    • 1998
  • In a diesel engine the phenomenon of spray impaction on a combustion chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impaction on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the angle variations of the impaction land sufrace prepared for the injection spray is analysed as a simulative manner. The spray dispersions, vapor distributions and flow fields are compared with impacting angle variation. The results show more angle give more vapor distribution until $15^{\circ}$.

  • PDF

물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향 (Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire)

  • 김성찬;유홍선;박현태;방기영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1703-1708
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$ Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $180^{\circ}$). The grobal mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhaced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

  • PDF

물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향 (Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire)

  • 김성찬;유홍선;박현태;방기영
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.28-33
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$. Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $^120{\circ}$, and $180^{\circ}$). The global mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhanced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.