• Title/Summary/Keyword: spot-matching

Search Result 62, Processing Time 0.022 seconds

Research for Generation of Accurate DEM using High Resolution Satellite Image and Analysis of Accuracy (고해상도 위성영상을 이용한 정밀 DEM 생성 및 정확도 분석에 관한 연구)

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • This paper focused on generation of more accurate DEM and analysis of accuracy. For this, we applied suitable sensor modeling technique for each satellite image and automatic pyramid matching using image pyramid was applied. Matching algorithm based on epipolarity and scene geometry also was applied for stereo matching. IKONOS, Quickbird, SPOT-5, Kompsat-2 were used for experiments. In particular, we applied orbit-attitude sensor modeling technique for Kompsat-2 and performed DEM generation successfully. All DEM generated show good quality. Assessment was carried out using USGS DTED and we also compared between DEM generated in this research and DEM generated from common software. All DEM had $9m{\sim}12m$ Mean Absolute Error and $13m{\sim}16m$ RMS Error. Experimental results show that the DEMs of good performance which is similar to or better than result of DEMs generated from common software.

AUTOMATIC PRECISION CORRECTION OF SATELLITE IMAGES

  • Im, Yong-Jo;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • Precision correction is the process of geometrically aligning images to a reference coordinate system using GCPs(Ground Control Points). Many applications of remote sensing data, such as change detection, mapping and environmental monitoring, rely on the accuracy of precision correction. However it is a very time consuming and laborious process. It requires GCP collection, the identification of image points and their corresponding reference coordinates. At typical satellite ground stations, GCP collection requires most of man-powers in processing satellite images. A method of automatic registration of satellite images is demanding. In this paper, we propose a new algorithm for automatic precision correction by GCP chips and RANSAC(Random Sample Consensus). The algorithm is divided into two major steps. The first one is the automated generation of ground control points. An automated stereo matching based on normalized cross correlation will be used. We have improved the accuracy of stereo matching by determining the size and shape of match windows according to incidence angle and scene orientation from ancillary data. The second one is the robust estimation of mapping function from control points. We used the RANSAC algorithm for this step and effectively removed the outliers of matching results. We carried out experiments with SPOT images over three test sites which were taken at different time and look-angle with each other. Left image was used to select UP chipsets and right image to match against GCP chipsets and perform automatic registration. In result, we could show that our approach of automated matching and robust estimation worked well for automated registration.

  • PDF

A Technique for Improving the Quality of Stereo DEM Using Texture Filters

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • One of the most important procedure in stereo DEM generation is the stereo matching process which finds the conjugate pixels in a pair of stereo imagery. In order to be found as conjugate pixels, the pixels should have distinct spatial feature to be distinguished from other pixels. However, in the homogeneous areas such as water covered or forest canopied areas, it is very difficult to find the conjugate pixels due to the lack of distinct spatial feature. Most of erroneous elevation values in the stereo DEM are produced in those homogeneous areas. This paper presents a simple method for improving the quality of stereo DEM utilizing the texture filters. An entropy filter was applied to one of the input stereo imagery to extract very homogeneous areas before stereo matching process. Those extracted homogeneous areas were excluded from being candidates for stereo matching process. Also a statistical texture filter was applied to the generated elevation values before the interpolation process was applied in odor to remove the remaining anomalous elevation values. Stereo pair of SPOT level 1B panchromatic imagery were used for the experiments. The results showed that by utilizing the texture filters as a pre and a post processor of stereo matching process, the quality of the stereo DEM could be dramatically improved.

A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation (Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.250-261
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the results of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation parameters obtained from modeling and conjugate points from matching. In the DEM generation system, matching procedure holds most of a processing time, therefore to reduce the time for matching, a new fast matching algorithm using gradient correlation and fast similarity measure calculation method is proposed. In this paper, the SPOT satellite images, level 1A 6000$\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM extraction with the satellite images.

Extracting Topographic Information from SPOT-5 HRG Stereo Images (SPOT-5 HRG 스테레오 영상으로부터 지형정보 추출)

  • Lee, Jin-Duk;Lee, Seong-Sun;Jeong, Tae-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.61-70
    • /
    • 2006
  • This paper presents photogrammetric processing to generate digital elevation models using SPOT-5 HRG stereo images and deals with the accuracy potential of HRG (High Resolution Geometry) supermode imagery for DEM generation. After bundle adjustment was preformed for sensor modelling, digital surface models were generated through the procedures of Epipolar image resampling and image matching. The DEM extracted from HRG imagery was compared along several test sections with the the refernce DEM which was obtained from the digital topographic maps of a scale of 1 to 5000. The ratio of the zone with DEM errors less than 5m to the whole zone was 53.8%, and about 2.5m RMSE was showed when assuming that the zones larger than 5m were affected by clouds, water bodies and buildings and excluding those zones from accuracy evaluation. In addition, the three-dimensional bird's eye view model and 3D building model were producted based on the DSM which was extracted from SPOT-5 HRG data.

  • PDF

A Pilot Project on Producing Topographic Map Using Medium Resolution Satellite Image (중해상도 위성영상을 이용한 지도제작 시험연구)

  • 박희주;한상득;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.373-383
    • /
    • 2001
  • This study conducted pilot mapping project to know the possibility of mapping with medium resolution satellite imageries. For this purpose, mapping experiments were conducted with each stereo model imageries of SPOT, KOMPSAT, and IRS- lC. And positional accuracy, analysis of detectable and describable features, and comparison with existing digital map were checked, possible mapping scale and cost analysis were conducted with these results. Regarding SPOT imagery, digital photogrammetric workstation was used for stereoplotting. Regarding KOMPSAT and IRS-lC imageries, because there were data format support problems. head-up digitizing was performed with ortho imageries rectified with DEMs generated by image matching. The results of experiments show that such features as wide road, river, coast line, etc are possible to detect and depict but many other features are not for SPOT, KOMPSAT, and IRS-lC imageries. On the aspect of mapping, therefore, SPOT is available for 1/50,000 topographic map revision, KOMPSAT and IRS-lC for 1/25.000 topographic map revision.

  • PDF

Validation and selection of GCPs obtained from ERS SAR and the SRTM DEM: Application to SPOT DEM Construction

  • Jung, Hyung-Sup;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.483-496
    • /
    • 2008
  • Qualified ground control points (GCPs) are required to construct a digital elevation model (DEM) from a pushbroom stereo pair. An inverse geolocation algorithm for extracting GCPs from ERS SAR data and the SRTM DEM was recently developed. However, not all GCPs established by this method are accurate enough for direct application to the geometric correction of pushbroom images such as SPOT, IRS, etc, and thus a method for selecting and removing inaccurate points from the sets of GCPs is needed. In this study, we propose a method for evaluating GCP accuracy and winnowing sets of GCPs through orientation modeling of pushbroom image and validate performance of this method using SPOT stereo pair of Daejon City. It has been found that the statistical distribution of GCP positional errors is approximately Gaussian without bias, and that the residual errors estimated by orientation modeling have a linear relationship with the positional errors. Inaccurate GCPs have large positional errors and can be iteratively eliminated by thresholding the residual errors. Forty-one GCPs were initially extracted for the test, with mean the positional error values of 25.6m, 2.5m and -6.1m in the X-, Y- and Z-directions, respectively, and standard deviations of 62.4m, 37.6m and 15.0m. Twenty-one GCPs were eliminated by the proposed method, resulting in the standard deviations of the positional errors of the 20 final GCPs being reduced to 13.9m, 8.5m and 7.5m in the X-, Y- and Z-directions, respectively. Orientation modeling of the SPOT stereo pair was performed using the 20 GCPs, and the model was checked against 15 map-based points. The root mean square errors (RMSEs) of the model were 10.4m, 7.1m and 12.1m in X-, Y- and Z-directions, respectively. A SPOT DEM with a 20m ground resolution was successfully constructed using a automatic matching procedure.

An Implementation of Automatic Upper-Lower Clothes Matching System Using Machine Learning (기계학습을 활용한 상하의 의류 자동매칭시스템 구현)

  • Kim, Jung-In
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.467-474
    • /
    • 2010
  • The market of Internet-based fashion/coordination shopping malls have been growing rapidly year by year. In accordance with this growth, Internet fashion shopping malls are also making a lot of efforts to increase their revenue by displaying new fashion products on a high spot or by having professional models wear them to make them more attractive to the customers. If online shopping malls have the functionality of automatically calculating the matching degree of lower and upper clothes, it could play a role of off-line shop assistants and provide a more convenient way of purchasing fashion products for customers. In this paper, we present a learning system adopting the content-based filtering method for online shopping malls, which automatically calculates the matching degree of lower and upper clothes and recommends the most well-matched pair.

2D-PAGE 영상 처리 및 분석 기술

  • 원용관
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.35-47
    • /
    • 2002
  • 2D-PAGE/MALDI-TOF는 프로-테옴 연구의 중요한 실험 기법중의 하나이다. 이는 단백질의 발현 분석을 위한 방법으로, 2D-PAGE 결과로 얻어진 영상 데이터의 분석에 대한 정확도가 단백질 발현에 대한 분석 결과의 질을 결정하는 중요한 요인으로 작용한다. 2D Electrophoresis에 의한 Gel Protein Database는 현재 많은 연구자들에 의해 생산되고 있으며, 대단히 많은 데이터들이 인터넷을 통하여 접근이 가능하다. 이러한 대량 정보의 Database 활용이 가능한 상황은 2D-PAGE에 의해 생산된 Gel Image의 상호 비교에 대한 요구를 도출하였다. 본 발표에서는 영상처리 및 형태인식 기술과 2D-PAGE 연구의 결합을 주제로 하여, 2D-PAGE Gel 영상 처리 및 비교에 관련되는 전처리 (preprocessing), spot detection, feature extraction, spot matching 및 image comparison 기술을 소개한다.

  • PDF

Vision-based AGV Parking System (비젼 기반의 무인이송차량 정차 시스템)

  • Park, Young-Su;Park, Jee-Hoon;Lee, Je-Won;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.