• Title/Summary/Keyword: spontaneous migration

Search Result 26, Processing Time 0.029 seconds

Ginseng Intestinal Bacterial Metabolite IH901 as a New Anti-Metastatic Agent

  • Hideo Hasegawa;Sung, Jong-Hwan;Huh, Jae-Doo
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.539-544
    • /
    • 1997
  • Anti-metastatic activities of IH901, an intestinal bacterial metabolic derivative formed from Ginseng protopanaxadiol saponins, was determined in vitro and in vivo. Under in vitro conditions, IH901 inhibited the migration of bovine aortic endothelial cells 25 times stronger than suramin and suppressed the invasion of HT1080 human fibrosarcoma cells into reconstituted basement membrane components of Matrigel 1000 times stronger than RGDS peptide. IH901 also showed inhibitory effect on type-IV collagenase secretion from HT 1080 cells and platelet aggregation. When the anti-metastatic activity of IH901 was evaluated in comparison with that of 5-FU using a spontaneous lung metastatic model of Lewis lung carcinoma, the administration of IH901 (10 mg/kg p. o.) to tumor-bearing mice led to a significant decrease in lung metastasis (43% of untreated control), which was slightly more effective than that obtained with 5-FU (56% of control). Thus, IH901 seems to exhibit its anti-metastatic activity partly through the inhibition of tumor invasion which results from the blockade of type IV collagenase secretion and also through anti-platelet and anti-angiogenic activities.

  • PDF

Enhanced Photocatalytic Activity by the Combined Influence of Ferroelectric Domain and Au Nanoparticles for BaTiO3 Fibers

  • Zhang, Xiaoshan;Huan, Yu;Zhu, Yuanna;Tian, Hui;Li, Kai;Hao, Yanan;Wei, Tao
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850149.1-1850149.10
    • /
    • 2018
  • Ferroelectric particles have been applied in the photocatalytic field because the spontaneous polarization results in the internal electric field, which can accelerate the separation and migration of photogenerated carriers. In this study, the $BaTiO_3$ (BT) fibers are synthesized by electrospinning. The BT fibers calcined above $800^{\circ}C$ exhibit a strong ferroelectric property, which is verified by a typical butterfly-shaped displacement-voltage loop. It is found that the BT fibers with the single-domain structure exhibit better photocatalytic performance than that with the multi-domain configuration. When the single-domain transforms into multi-domain, the integrated internal electric field correspondingly breaks up, inducing that the internal electric field might cancel each other out and diminish the separation of photogenerated carriers. Also, the Au nanoparticles can improve the photocatalytic activity further on account of the surface plasmon resonance. Therefore, it is suggested that Au nanoparticles decorated on ferroelectric BT nanomaterials are promising photocatalysts.

Application of Two Different Tracheal Stents in Small Toy Dogs with Tracheal Collapse

  • Piao, Zhenglin;Kim, Young-Ung;Kang, Jin-Su;Lee, Dong-Bin;Heo, Su-Young;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.36 no.5
    • /
    • pp.248-252
    • /
    • 2019
  • Tracheal collapse is a common respiratory disease in dogs. There are many ways to treat tracheal collapse, one of which is the use of an intraluminal stent. In this study, we divided 21 dogs into two groups and implant conventional stents and new nitinol stents. Comparison of two groups was based on following, feature of stent fracture, form of stent migration, clinical sign improvement, complication and prognosis. Approaching was established via C-arm under spontaneous breathing and placing a stent at the site of collapse. Using radiographic images, determine stent size accurately. For a comparison of identical condition, all intraluminal stents were placed 10 mm caudal from larynx to 10 mm cranial from carina. In this study, new nitinol stents improve the problems of conventional stents and may be effective in the treatment of tracheal collapse in small dogs.

Effect of Parthenogenetic Mouse Embryonic Stem Cell (PmES) in the Mouse Model of Huntington′s Disease

  • 이창현;김용식;이영재;김은영;길광수;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.80-80
    • /
    • 2003
  • Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by marked cell death in the striatum and cortex. Stereotaxic injection of quinolinic acid (QA) into striatum results in a degeneration of GABAergic neurons and exhibits abnormal motor behaviors typical of the illness. The objective of this study was carried out to obtain basic information about whether parthenogenetic mouse embryonic stem (PmES) cells are suitable for cell replacement therapy of HD. To establish PmES cell lines, hybrid F1 (C57BL/6xCBA/N) mouse oocytes were treated with 7% ethanol for 5 min and cytochalasin-B for 4 hr to initiate spontaneous cleavage. Thus established PmES cells were induced to differentiate using bFGF (20ng/ml) followed by selection of neuronal precursor cells for 8 days in N2 medium. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days, then a final differentiation step in N2 medium for 7 days. To establish recipient animal models of HD, young adult mice (7 weeks age ICR mice) were lesioned unilaterally with a stereotaxic injection of QA (60 nM) into the striatum and the rotational behavior of the animals was tested using apomorphine (0.1mg/kg, IP) 7 days after the induction of lesion. Animals rotating more than 120 turns per hour were selected and the differentiated PmES cells (1$\times$10$^4$cells/ul) were implanted into striatum. Four weeks after the graft, immunohistochemical studies revealed the presence of cells reactive to anti-NeuN antibody. However, only a slight improvement of motor behavior was observed. By Nissl staining, cell mass resembling tumor was found at the graft site and near cortex which may explain the slight behavioral improvement. Detailed experiment on cell viability, differentiation and migration explanted in vivo is currently being studied.

  • PDF

Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells

  • Wang, Dong-Chun;Zhang, Yan;Chen, Hai-Yan;Li, Xiao-Li;Qin, Li-Juan;Li, Ya-Juan;Zhang, Hong-Yi;Wang, Shuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3239-3245
    • /
    • 2012
  • Gliomas are a group of heterogeneous primary central nervous system tumors. Hyperthermia has proven to be a potential therapeutic tool for cancers in the clinic. However, the molecular mechanisms of hyperthermia remain unclear. The objective of this study was to investigate the effects of hyperthermia on the invasiveness in C6 glioma cells and related molecular pathways. Here our data show hyperthermia stimulated the release of tumor necrosis factor-alpha (TNF-${\alpha}$) and decreased C6 glioma cell migration and invasive capability at 30, 60, 120 and 180 min; with increased spontaneous apoptosis in C6 glioma cells at 120 min. We also found mitogen-activated protein kinase (P38 MAPK) protein expression to be increased and nuclear factor-kappa B (NF-${\kappa}B$) protein expression decreased. Based on the results, we conclude that hyperthermia alone reduced invasion of C6 glioma cells through stimulating TNF-${\alpha}$ signaling to activate apoptosis, enhancing P38 MAPK expression and inhibiting the NF-${\kappa}B$ pathway, a first report in C6 rat glioma cells.

Effects of Ethosuximide on the Pilocarpine Induced Seizure in Rat Model of Neuronal Migration Disorder

  • Kim, Byung-Kon;Choi, In-Sun;Cho, Jin-Hwa;Jang, Il-Sung;Lee, Maan-Gee;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.235-242
    • /
    • 2006
  • Cortical malformation-associated epileptic seizures are resistant to conventional anticonvulsant drugs. Relatively little research has been conducted on the effects of antiepileptic drugs (AEDs) on seizure activity in a rat model of dysplasia. We have used rats exposed to methylazoxymethanol acetate (MAM) in utero, an animal model featuring nodular heterotopia, to investigate the effects of ethosuximide (ETX) in the dysplastic brain. Pilocarpine was used to induce acute seizure in MAM-exposed and age-matched vehicle-injected control animals. Field potential recordings were used to monitor the amplitude and number of population spikes, and paired pulse inhibition in response to stimulation of the commissural pathway. Pharmaco-resistance was tested by measuring seizure latencies after pilocarpine administration (320 mg/kg, Lp.) with and without pre-treatment with ETX. Pre-treatment with 300 mg of ETX significantly prolonged the latency to the status epilepticus (SE) in both control and MAM-treated groups. Pre-treatment with ETX 100mg and ETX 200 mg had little effect in MAMexposed rats. However, ETX 200 mg prolonged the latency to the SE in control groups. Spontaneous field potential and secondary after-discharges were higher for MAM-treated rat in comparison with control rats injects with ETX. The main findings of this study are that acute seizures initiated in MAM-exposed rats are relatively resistant to standard ETX assessed in vivo. These data suggest that ETX do not prolong seizure latencies in MAM-rats exposed to pilocarpine.