• Title/Summary/Keyword: splitting test

Search Result 301, Processing Time 0.028 seconds

Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete

  • Yu, Kequan;Lu, Zhoudao
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.199-213
    • /
    • 2015
  • The residual fracture toughness of post-fire normal-strength concrete subjected up to $600^{\circ}C$ is considered by the wedge splitting test. The initial fracture toughness $K_I^{ini}$ and the critical fracture toughness $K_I^{un}$ could be calculated experimentally. Their difference is donated as the cohesive fracture toughness $K_I^c$ which is caused by the distribution of cohesive stress on the fracture process zone. A comparative study on determining the residual fracture toughness associated with three bi-linear functions of the cohesive stress distribution, i.e. Peterson's softening curve, CEB-FIP Model 1990 softening curve and Xu's softening curve, using an analytical method is presented. It shows that different softening curves have no significant influence on the fracture toughness. Meanwhile, comparisons between the experimental and the analytical calculated critical fracture toughness values further prove the validation of the double-K fracture model to the post-fire concrete specimens.

Tension Stiffening Effect for Reinforced Concrete Members (철근 콘크리트 부재의 인장강성 효과에 관한 연구)

  • 이봉학;윤경구;홍창우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.83-93
    • /
    • 1999
  • This paper presents tension stiffening effect of Reinforced concrete members obtained from experimental results on direct tension and bending. From the direct tension test program, crack patterns were investigated with tension softening behaviors of concrete. Tension stiffening effects and losses of strain energy were, also, analyzed from the load-deflection curve with the main experimental variables such as concrete strength, yielding stress and reinforcement ratio of rebar. Tension stiffening effect of RC members increase linearly until the first crack initiate, decrease inversely with number of cracks, and then decrease rapidly when splitting cracks are happened. The tension stiffening effect is shown to be more important at the member of lower reinforcement than that of higher. Therefore, it necessitates to consider the tension stiffening effects at a nonlinear analysis. From the above analysis, a tension stiffening model of concrete is proposed and verified by applying it to bending members. From the numerical analysis by finite element approach, it is shown that the proposed model evaluates a little higher in analyzing at nonlinear region of high strength concrete, but, perform satisfactorily in general.

An Experimental Study on the Structural Behavior of Reinforced Concrete Continuous Deep Beams Using Welded Deformed Wire Fabric as Shear Reinforcements (이형 용접철망을 전단철근으로 사용한 철근콘크리트 연속 깊은 보의 구조적 거동에 대한 실험적 연구)

  • Yang Keun-Hyeok;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.95-98
    • /
    • 2005
  • The objective of this experimental study was to understand the structural behavior of reinforced concrete continuous deep beams with welded deformed wire fabric(WWF) as shear reinforcement. The structural behavior of deep beams reinforced with WWF was compared with that of deep beams reinforced with orthogonal shear reinforcement which had standard anchorage corresponding to ACI 318-02. Test results showed that the load transferring capacity and the control of splitting cracks in the strut of WWF were almost as effective as those of orthogonal shear reinforcement with standard anchorage.

  • PDF

An Experimental Study on Bond Properties the ways of Disposal Horizontality Placing Joint of Concrete Structure (콘크리트 구조체의 수평 이어치기 처리방법별 부착성에 관한 실험적 연구)

  • Kim, Doo-Bea;Heo, Jae-Won;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.1-4
    • /
    • 2006
  • Because do placing joint after smallest $1{\sim}3$ day about concrete that is placed beforehand in field, it is difficult that remove laitance happening harden concrete. This laitance happens a problem of bond properties, deterioration in strength. In this research got following conclusion as result that do research about bond properties the way of disposal placing joint. Air Jet is loft interior and exterior. Water Jet appeared that laitance Removal Capacity is superior to dimension within 5%. Deterioration in strength is measured 37% by splitting tensile strength test result by laitance. Deterioration in strength by laitance do more than 30% that removal of laitance is predicted must consist necessarily at concrete horizontality placing joint stroke.

  • PDF

Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

  • Chow, Jeng Hei;Ng, E.Y.K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.320-329
    • /
    • 2016
  • An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE) outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%-80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.

Structural behavior of steel beams strengthened with CFRP strips and cables

  • Lim, Donghwan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.289-298
    • /
    • 2022
  • In the present study, structural behavior of steel beams strengthened with CFRP strips and cables was investigated by a series of experiments. For this purpose, two groups of experimental studies were carried out: one for the beam series strengthened only with CFRP strips and the other for the steel beam series strengthened with CFRP strips and prestressed wires. From this test, it is found that the flexural stiffness and strength of the steel beams strengthened with CFRP strips and cables were significantly improved comparing to the un-strengthened one. Three failure modes such as sudden de-bonding, splitting and rupturing of CFRP strips were observed. The ultimate tensile strains of attached CFRP strips on the steel beams were noticed in the range between 8,000με and 11,000με, and this result disclose the perfect composite reaction CFRP strips and steel beams.

The Study of Chronic Kidney Disease Classification using KHANES data (국민건강영양조사 자료를 이용한 만성신장질환 분류기법 연구)

  • Lee, Hong-Ki;Myoung, Sungmin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.271-272
    • /
    • 2020
  • Data mining is known useful in medical area when no availability of evidence favoring a particular treatment option is found. Huge volume of structured/unstructured data is collected by the healthcare field in order to find unknown information or knowledge for effective diagnosis and clinical decision making. The data of 5,179 records considered for analysis has been collected from Korean National Health and Nutrition Examination Survey(KHANES) during 2-years. Data splitting, referred as the training and test sets, was applied to predict to fit the model. We analyzed to predict chronic kidney disease (CKD) using data mining method such as naive Bayes, logistic regression, CART and artificial neural network(ANN). This result present to select significant features and data mining techniques for the lifestyle factors related CKD.

  • PDF

Field Case Study of Mechanized Form Roads Pavement Construction using Cellulose Fiber Reinforced Concrete (셀룰로오스 섬유보강 콘크리트를 사용한 기계화경작로 확·포장공사의 현장사례 연구)

  • Park, Jong Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.47-56
    • /
    • 2015
  • At the present, the mechanized form roads pavement was constructed with plain concrete. Mostly, it was used by welded wire mesh for preventing crack. Cellulose fibers for the reinforcement of concrete offer relatively high levels of elastic modulus, fiber count (per unit weight), specific surface, and bond strength to cement-based materials. The construction of concrete pavement confirmed that cellulose fiber reinforced concrete was applicable to mechanized form roads pavement. In the study, cellulose fibers were used here at 0.08 % volume fraction, which is equivalent to a fiber content of $1.2kg/m^3$. Cellulose fiber reinforced concrete were compared with plain concrete. Field test results indicated that cellulose fiber reinforced concrete showed slightly to increase of 28 days compressive strength and improved the initial strength. it tended to increase of splitting tensile strength. Test results showed that the slump and air content tend to decreased. but, the variation of air contends is very little. Also, construction cost of cellulose fiber reinforced concrete is less than about 25.7 % the case of welded wire mesh previously used. Therefore, The cost reduction is expected to be possible in construction site by mechanized form roads pavement.

Fracture property of steel fiber reinforced concrete at early age

  • Fu, Chuan-Qing;Ma, Qin-Yong;Jin, Xian-Yu;Shah, A.A.;Tian, Ye
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.31-47
    • /
    • 2014
  • This research is focused on obtaining the fracture property of steel fiber reinforced concrete(SFRC) specimens at early ages of 1, 2, 3 and 7-day, respectively. For this purpose, three point bending tests of nine groups of SFRC beams with notch of 40mm depth and different steel fiber ratios were conducted. The experimental results of early age specimens were compared with the 28-day hardened SFRC specimens. The test results indicated that the steel fiber ratios and curing age significantly influenced the fracture properties of SFRC. A reasonable addition of steel fiber improved the fracture toughness of SFRC, while the fracture energy of SFRC developed with curing age. Moreover, a quadratic relationship between splitting strength and fracture toughness was established based on the experiment results. Additionally, afinite element (FE) method was used to investigate the fracture properties of SFRC.A comparison between the FE analysis and experiment results was also made. The numerical analysis fitted well with the test results, and further details on the failure behaviors of SFRC could be revealed by the suggested numerical simulation method.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.