• 제목/요약/키워드: splitting concrete

검색결과 358건 처리시간 0.028초

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

실리카흄을 이용한 고강도 콘크리트의 기초적 성질 (Foundamental Properties of High Strength Concrete Using Silica Fume)

  • 곽기주;이경동;곽동림
    • 한국농공학회지
    • /
    • 제39권1호
    • /
    • pp.83-92
    • /
    • 1997
  • An experimental study of the application of Silica fume for the high strength concrete was conducted. Nine specimens with three different contents of silica fume, 0%, 10%, 20% and with three water-cement ratio 30%, 40%, 50% were tested. Results shows that 10% of silica fume and 30% of water-cement ratio has a maximum strength with 700kg/$cm^2$ of compressive strength and 64kg/$cm^2$ of splitting tensile strength and 100kg/$cm^2$ of flexural strength. Slump value of the tested samples decreases with increasing water-cement ratio and elapsed time of silica fume. Splitting tensile strength$({\sigma}_f)$ and flexural strength $({\sigma}_f)$ and static modulus of elasticity(E) can be correlated with compressive strength $({\sigma}_c)$ from a regression analysis.

  • PDF

비세척된 재생 조골재 콘크리트의 강도특성 (Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

고강도, 고유동 Belite 콘크리트의 부착성능 (Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete)

  • 김상준;조필규;이세웅;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber

  • Al-Rawi, Saad;Taysi, Nildem
    • Advances in concrete construction
    • /
    • 제6권4호
    • /
    • pp.323-344
    • /
    • 2018
  • The study herein reports the impact of Steel Fiber (SF) and Ground Granulated Blast Furnaces slag (GGBFS) content on the fresh and hardened properties of fly ash (FA) based Self-Compacting Geopolymer Concrete (SCGC). Two series of self-compacting geopolymer concrete (SCGC) were formulated with a constant binder content of $450kg/m^3$ and at an alkaline-to-binder (a/b) ratio of 0.50. Fly ash (FA) was substituted with GGBFS with the replacement levels being 0%, 25%, 50%, 75%, and 100% by weight in each SCGC series. Steel fiber (SF) wasn't employed in the assembly of the initial concrete series whereas, within the second concrete series, an SF combination was achieved by a constant additional level of 1% by volume. Fresh properties of mixtures were through an experiment investigated in terms of slump flow diameter, T50 slump flow time, V-funnel flow time, and L-box height ratio. Moreover, the mechanical performance of the SCGCs was evaluated in terms of compressive strength, splitting tensile strength, and fracture toughness. Furthermore, a statistical analysis was applied in order to judge the importance of the experimental parameters, like GGBFS and SF contents. The experimental results indicated that the incorporation of SF had no vital impact on the fresh characteristics of the SCGC mixtures whereas GGBFS aggravated them. However, the incorporation of GGBFS was considerably improved the mechanical properties of SCGCs. Moreover, the incorporation of SF with the total different quantity of GGBFS replacement has considerably increased the mechanical properties of SCGCs, by close to (65%) for the splitting strength and (200%) for compressive strength.

제강슬래그 골재의 소파블록 적용성 평가 (Applicability of Steel Slag Aggregate for Artificial Armor Unit)

  • 양은익;이광교;한상훈
    • 콘크리트학회논문집
    • /
    • 제16권5호
    • /
    • pp.591-596
    • /
    • 2004
  • 제강슬래그 골재의 소파블록 적용성을 평가하기 위하여, 구조적 재료로서의 콘크리트 물성을 연구하였다. 또한, 제강슬래그 골재를 사용한 해양 콘크리트의 생물학적 연구를 수행하였다. 수행된 콘크리트의 물성 실험은 슬럼프, 공기량, 압축강도, 쪼갬인장강도, 탄성계수, 탄산화 저항성, 수화열, 동결융해, 황산염 침지, 건조수축 실험 등이다. 또한, 해양 저서생물과 해조류의 번식 및 증식에 대한 조사를 위해 생물학적 실험이 수행되었다. 본 연구결과에 따르면, 제강슬래그 골재의 함유는 압축강도, 쪼갬인장강도, 그리고 탄성계수에 대하여 나쁜 영향을 미치지 않으며, 콘크리트의 내구성 측면에서도 제강슬래그 골재의 함유에 의한 악영향을 받지 않았다. 생물학적 연구에 따르면, 제강슬래그 골재는 해양 저서생물과 해조류의 증식과 번식에 이상적인 재료로서 평가되었다.

Recycled Concrete Aggregates: A Review

  • McNeil, Katrina;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.61-69
    • /
    • 2013
  • This paper discusses the properties of RCA, the effects of RCA use on concrete material properties, and the large scale impact of RCA on structural members. The review study yielded the following findings in regards to concrete material properties: (1) replacing NA in concrete with RCA decreases the compressive strength, but yields comparable splitting tensile strength; (2) the modulus of rupture for RCA concrete was slightly less than that of conventional concrete, likely due to the weakened the interfacial transition zone from residual mortar; and (3) the modulus of elasticity is also lower than expected, caused by the more ductile aggregate. As far as the structural performance is concerned, beams with RCA did experience greater midspan deflections under a service load and smaller cracking moments. However, structural beams did not seem to be as affected by RCA content as materials tests. Most of all, the ultimate moment was moderately affected by RCA content. All in all, it is confirmed that the use of RCA is likely a viable option for structural use.

콘크리트와 철근의 부착강도에 대한 횡구속 설계변수 (Design Parameters of Confinement on Bond Strength of Reinforcing Steel to Concrete)

  • 김상준;이재열;이웅세;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.653-658
    • /
    • 1999
  • Bond between reinforcing bars and the surrounding concrete is supposed to safely transfer load in the design process of reinforced concrete structures. Bond failure of reinforcing bars generally take place by splitting of concrete cover as bond force between concrete and reinforcing bars exceeds the resistance by the confinement of the concrete cover and transverse reinforcement. Confinement, concrete cover and transverse reinforcement, on bond are the key factor of current provision to determine development length of reinforcing bars to concrete. In this study, previous available data are analyzed with respect to the current provisions for development and splice of reinforcement. From this study, the new provision for the design are proposed, which will be efficient and effective with some specific limit value.

  • PDF

고강도 경량콘크리트의 개발, 구조특성 및 실용화 (Development and Application of High-Strength Lightweight Concrete, and its Structural Properties)

  • 최명신;안종문;신성우;강훈;김정식;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.37-44
    • /
    • 1998
  • The objective of this study is development of high strength lightweight concrete and application or structural use. For this, mix proportions for each strength level were selected from lab tests, and adapted to producing ready-mixed concrete in batcher plant. It was very important to prewet the lightweight aggregates sufficiently for producibility and also workability. Splitting tensile strength of high-strength lightweight concrete produced has lower values than that of normal weight concrete, but modulus of rupture and modulus of elasticity are not less than normal weight concrete. The strength reduction factor ($\lambda$) for sand-lightweight concrete make higher than 0.85 present in structures using high-strength lightweight concrete. And it was showed that not parabola distribution but triangular distribution of stress in compression zone.

  • PDF

Belite 시멘트를 이용한 고성능 콘크리트의 철근 부착성능 실험연구 (An experimental study on Bond strength of Reinforcing steel to High-performance Concrete using Belite Cement)

  • 조필규;김상준;강지훈;김영식;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.408-415
    • /
    • 1997
  • Bond strength of reinforcing bar to high-performance concrete using Belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that for the group with portland cement I using superplasticizer additional slump does not decrease the bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfy the modification factor for top reinforcement. The result also show that bond strength is function of square root of concrete compressive strength and cover thickness. More detailed evaluation will be conducted from the test specimen with high strength concrete using the belite cement.

  • PDF