• Title/Summary/Keyword: spline function

Search Result 248, Processing Time 0.025 seconds

Precision Calibration of Gyroscopes for Improving Dead-Reckoning Accuracy in Mobile Robots (이동로봇의 추측항법 정확성을 개선하기 위한 자이로스코프의 정확도 교정)

  • Ko Jae-Pyung;Yun Jae-Mu;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2005
  • This paper describes a method aimed at improving dead-reckoning accuracy with gyroscopes in mobile robots. The method is a precision calibration procedure for gyroscopes, which effectively reduces the ill effects of nonlinearity of the scale-factor and temperature dependency. This paper also describes the methods of gyro data collection fur all ambient temperature$(-40^{\circ}C{\~}+80^{\circ}C)$ using cubic spline interpolation and defining the error function. The sensor used was a vibrating gyroscope called the EWTS82NA21, which is low lost and commonly used in car navigation system, made by Panasonic. This angular rate sensor utilizes Coriolis force generated by a vibrating tuning fork. The paper also provides experimental results to check the performance and the effectiveness of the proposed method.

Some Properties of the Fuzzy Rule Table for Polynomials of two Variables

  • Ryou, Jeong-A;Chung, Sei-Young;Moon, Byung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.86-89
    • /
    • 2000
  • In this paper, we consider a fuzzy system representation for polynomials of two variables. The representation we use is an exact transformation of the corresponding cubic spline interpolation function. We examine some of the properties of their fuzzy rule tables md prove that the rule table is symmetric or antisymmetric depending on whether the polynomial is symmetric or antisymmetric. A few examples are included to verify our proof. These results not only provide some insights on properties of the cubic spline interpolation coefficients but also provide some help in setting up fuzzy rule tables for functions of two variables.

  • PDF

A Study on TCVQ Using Orthogonal Spline Wavelet (직교 스플라인 웨이브렛 변환을 이용한 TCVQ 설계에 관한 연구)

  • 류중일;김인겸;김성만;정현민;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1383-1392
    • /
    • 1995
  • In this paper, the method to incorporate TCVQ(Trellis Copded Vector Quantizer) into the encoding of the wavelet trans formed(WT) image followed by a variable length coding(VLC) or an entropy coding(EC) is considered. By WT, an original image is separated into 10 bands with various resolutions and directional components. TCVQ used to compress these WT coefficients is a finite state machine that encodes the input source on the basis of the current input and the current state. Wavelet basis used in this paper is designed by orthogonal spline function. A modified set partitioning algorithm to Wang's is also presented. A simple modification to Wang's algorithm gives a highly time-efficient result. Proposed WT-TCVQ encoder shows a very competitive result, giving 37.46dB in PSNR at 1.002bpp when encoding 512$\times$512 LENA.

  • PDF

A Study on Development of Ship Economic Evaluation System Using ASMOD (ASMOD를 이용한 선박 경제성 평가시스템 구축에 관한 연구)

  • Shin, Soo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • The aim of this paper is to build up the design model using ASMOD(Adaptive Spline Modeling of Observation Data) for the optimum scale of fleet, ship particulars and ship speed, etc. ASMOD, which define membership functions of fuzzy rule as B-spline basis function, represents a whole system as the sum of the sub-model. As it reduces the number of division of the space generated by the fuzzy set of input variables, it has a advantage of simplification to model structure and is efficient to represent the non-linear model.

Multivariate Decision Tree for High -dimensional Response Vector with Its Application

  • Lee, Seong-Keon
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.539-551
    • /
    • 2004
  • Multiple responses are often observed in many application fields, such as customer's time-of-day pattern for using internet. Some decision trees for multiple responses have been constructed by many researchers. However, if the response is a high-dimensional vector that can be thought of as a discretized function, then fitting a multivariate decision tree may be unsuccessful. Yu and Lambert (1999) suggested spline tree and principal component tree to analyze high dimensional response vector by using dimension reduction techniques. In this paper, we shall propose factor tree which would be more interpretable and competitive. Furthermore, using Korean internet company data, we will analyze time-of-day patterns for internet user.

APPROXIMATION METHOD FOR SCATTERED DATA FROM SHIFTS OF A RADIAL BASIS FUNCTION

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1087-1095
    • /
    • 2009
  • In this paper, we study approximation method from scattered data to the derivatives of a function f by a radial basis function $\phi$. For a given function f, we define a nearly interpolating function and discuss its accuracy. In particular, we are interested in using smooth functions $\phi$ which are (conditionally) positive definite. We estimate accuracy of approximation for the Sobolev space while the classical radial basis function interpolation applies to the so-called native space. We observe that our approximant provides spectral convergence order, as the density of the given data is getting smaller.

  • PDF

Identification of the Distribution Function of the Preisach Model using Inverse Algorithm

  • Koh, Chang-Seop;Ryu, Jae-Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.168-173
    • /
    • 2002
  • A new identification algorithm for the Preisach model is presented. The algorithm treats the identification procedure of the Preisach model as an inverse problem where the independent variables are parameters of the distribution function and the objective function is constructed using only the initial magnetization curve or only tile major loop of the hysteresis curve as well as the whole reversal curves. To parameterize the distribution function, the Bezier spline and Gaussian function are used for the coercive and interaction fields axes, respectively. The presented algorithm is applied to the ferrite permanent magnets, and the distribution functions are correctly found from the major loop of the hysteresis curve or the initial magnetization curve.

On the Reclamation Earthwork Calculation using the Hermite and Spline Function (Hermite와 Spline 함수를 이용한 매립토공량 계산)

  • Mun, Du-Yeoul;Lee, Yong-Hee;Lee, Mun-Jae
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.473-479
    • /
    • 2002
  • The estimation of the volume of a pit excavation is often required in many surveying, soil mechanics, highway applications and transportation engineering situations. The calculation of earthwork plays a major role in plan or design of many civil engineering projects such as seashore reclamation, and thus it has become very important to improve the accuracy of earthwork calculation. In this paper the spot height method, proposed formulas(A, B, C), and chen and Line method are compared with the volumes of the pits in these examples. And we proposed an algorithm of finding a terrain surface with the free boundary conditions and both direction spline method drawback, i.e., the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial was chosen as the methematical model of the new method. From the characteristics of the cubic spline polynomial, the modeling curve of the new method was smooth and matched the ground profile well. As a result of this study, algorithm of proposed three methods to estimate pit excavation volume provided a better accuracy than spot height, chamber, chen and Lin method. And the mathematical model mentioned makes is thought to give a maximum acccuracy in estimating the volume of a pit excavation.

A comparative study of different radial basis function interpolation algorithms in the reconstruction and path planning of γ radiation fields

  • Yulong Zhang;Jinjia Cao;Biao Zhang;Xiaochang Zheng;Wei Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2806-2820
    • /
    • 2024
  • Accurate reconstruction of radiation field and path planning are very important for the safety of operators in the process of dismantling nuclear facilities. Based on radial basis function (RBF) interpolation algorithm, this paper discussed the application of inverse multiquadric radial basis Function (IMRBF) interpolation method to the reconstruction of gamma radiation field, and proved the feasibility of reconstructing a radiation field with multiple γ sources. The average relative errors of IMRBF interpolation results were 4.28% and 8.76%, respectively, for the experimental scenarios with single and double gamma sources. After comparing the consistency between the simulated scene and the experimental scene, IMRBF method and Cubic Spline method were respectively used to reconstruct the gamma radiation field by Geant4 simulation data. The results showed that the interpolation accuracy of IMRBF method was superior to that of Cubic Spline method. Further, more RBF interpolation algorithms were used to reconstruct the multi-γ source radiation field, and then the Probabilistic Roadmap (PRM) algorithm was used to optimize the human walking path in the radiation field reconstructed by different interpolation methods. The optimal paths in radiation fields generated by multiple interpolation methods were compared. The results herein contribute to a comprehensive understanding of RBF interpolation methods in reconstructing γ radiation fields and their application in optimizing paths in radiation environments. The insights may provide valuable information for decision-making in radiation protection during the decommissioning of nuclear facilities.

A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION (Radial Basis Function을 사용한 격자 변형에 대한 연구)

  • Je, S.Y.;Jung, S.K.;Yang, Y.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF