• Title/Summary/Keyword: spline curve

Search Result 205, Processing Time 0.026 seconds

A Study of Parametric Curve Interpolator in CAD/CAM Ststem (CAD/CAM 시스템에서 매개변수형 곡선본간기에 관한 연구)

  • 김희송
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 1996
  • The interpolator is very important in CNC machines. This study proposed a parametric curve interpolator(PCI) which can be used for machining any sculptured surface represented in a parametric form and generates commands for tool motion between CAD data points according to given accuracy demands. The proposed interpolator is superior to the existing linear interpolator in accuracy, feed rate and acceleration continuity. Moreover in comparison to the recently developed cubic spline interpolator, the PCI has the capability of handling higher order parametric curves and also ensures precise tracking in the velocity domain. Results from real time simulations and experiments on open architecture CNC machines equipped with the proposed interpolator are presented to show its practical capagility. It is believed that the combination of the proposed interpolator and the open architecture machine controller further advances the area of command generation which is an important aspect of CAD/CAM.

  • PDF

A Geometric Compression Method Using Dominant Points for Transmission to LEO Satellites

  • Ko, Kwang Hee;Ahn, Hyo-Sung;Wang, Semyung;Choi, Sujin;Jung, Okchul;Chung, Daewon;Park, Hyungjun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.622-630
    • /
    • 2016
  • In the operation of a low earth orbit satellite, a series of antenna commands are transmitted from a ground station to the satellite within a visibility window (i.e., the time period for which an antenna of the satellite is visible from the station) and executed to control the antenna. The window is a limited resource where all data transmission is carried out. Therefore, minimizing the transmission time for the antenna commands by reducing the data size is necessary in order to provide more time for the transmission of other data. In this paper, we propose a geometric compression method based on B-spline curve fitting using dominant points in order to compactly represent the antenna commands. We transform the problem of command size reduction into a geometric problem that is relatively easier to deal with. The command data are interpreted as points in a 2D space. The geometric properties of the data distribution are considered to determine the optimal parameters for a curve approximating the data with sufficient accuracy. Experimental results demonstrate that the proposed method is superior to conventional methods currently used in practice.

Harmony Arrangements using B-Spline Tension Curves (B-스플라인 텐션 곡선을 이용한 음악 편곡)

  • Yoo, Min-Joon;Lee, In-Kwon;Kwon, Dae-Hyun
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • We suggest a graphical representation of the tension flow in tonal music using a piecewise parametric curve, which is a function of time illustrating the changing degree of tension in a corresponding chord progression. The tension curve can be edited by using conventional curve editing techniques to reharmonize the original music with reflecting the user's demand to control the tension of music. We introduce three different methods to measure the tension of a chord in terms of a specific key, which can be used to represent the tension of the chord numerically. Then, by interpolating the series of numerical tension values, a tension curve is constructed. In this paper, we show the tension curve editing method can be effectively used in several interesting applications: enhancing or weakening the overall feeling of tension in a whole song, the local control of tension in a specific region of music, the progressive transition of tension flow from source to target chord progressions, and natural connection of two songs with maintaining the smoothness of the tension flow. Our work shows the possibility of controlling the perceptual factor (tension) in music by using numerical methods. Most of the computations used in this paper are not expensive so they can be calculated in real time. We think that an interesting application of our method is an interactive modification of tension in background music according to the user's emotion or current scenario in the interactive environments such as games.

  • PDF

A Scheme for Computing Time-domain Electromagnetic Fields of a Horizontally Layered Earth (수평다층구조에 대한 시간영역 전자기장의 계산법)

  • Jang, Hangilro;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • A computer program has been developed to estimate time-domain electromagnetic (EM) responses for a onedimensional model with multiple source and receiver dipoles that are finite in length. The time-domain solution can be obtained by applying an inverse fast Fourier transform (FFT) to frequency-domain fields for efficiency. Frequency-domain responses are first obtained for 10 logarithmically equidistant frequencies per decade, and then cubic spline interpolated to get the FFT input. In the case of phases, the phase curve must be made to be continuous prior to the spline interpolation. The spline interpolated data are convolved with a source current waveform prior to FFT. In this paper, only a step-off waveform is considered. This time-domain code is verified with an analytic solution and EM responses for a marine hydrocarbon reservoir model. Through these comparisons, we can confirm that the accuracy of the developed program is fairly high.

A Sweep Surface based on Two-Parameter Motion (2-변수 모션기반의 스윕곡면)

  • Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • We present a new technique for constructing a sweep surface using two-parameter motion. Firstly, a new rational B-spline motion with two parameters is introduced, which is obtained by extending its orientation curve and scaling curve to surface counterparts. A sweep surface is then defined by a single vertex v under the two-parameter motion and allows to represent different u-directional iso-curves depending on parameter ${\upsilon}$. Efficient techniques for modeling and editing the surface are achieved by intuitively controlling the two-parameter motion. We demonstrate the effectiveness of our technique with experimental results on modeling and editing a 3D propeller model.

Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm (강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교)

  • Jo, Gwanggon;Ha, Taehwan;Yoon, Sanghoo;Jang, Yuna;Jung, Minwoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

On the Reclamation Earthwork Calculation using the Hermite and Spline Function (Hermite와 Spline 함수를 이용한 매립토공량 계산)

  • Mun, Du-Yeoul;Lee, Yong-Hee;Lee, Mun-Jae
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.473-479
    • /
    • 2002
  • The estimation of the volume of a pit excavation is often required in many surveying, soil mechanics, highway applications and transportation engineering situations. The calculation of earthwork plays a major role in plan or design of many civil engineering projects such as seashore reclamation, and thus it has become very important to improve the accuracy of earthwork calculation. In this paper the spot height method, proposed formulas(A, B, C), and chen and Line method are compared with the volumes of the pits in these examples. And we proposed an algorithm of finding a terrain surface with the free boundary conditions and both direction spline method drawback, i.e., the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial was chosen as the methematical model of the new method. From the characteristics of the cubic spline polynomial, the modeling curve of the new method was smooth and matched the ground profile well. As a result of this study, algorithm of proposed three methods to estimate pit excavation volume provided a better accuracy than spot height, chamber, chen and Lin method. And the mathematical model mentioned makes is thought to give a maximum acccuracy in estimating the volume of a pit excavation.

Reduction of Blocking Effect Using a Rational B-Spline Curve (유리 B 스플라인 곡선들 이용한 블록 효과 감소)

  • 김희정;김지홍
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.107-110
    • /
    • 2001
  • 본 논문에서는 유리 B 스플라인 곡선을 이용한 새로운 블록 효과 감소 방법들 제안한다. 블록 효과는 매우 낮은 비트율로 블록 기반 부호화 방식을 수행할 때 복원 영상에서 나타나는 블록 형태의 왜곡을 의미한다. 제안된 기법에서는 컴퓨터 그래픽스 분야에서 제어점을 근사하는 부드러운 곡선을 생성하기 위해 사용되는 유리 B 스플라인 곡선을 이용하여 블록 효과를 감소시킨다. 즉 블록 경계의 화소 값들을 제어 점으로 사용하며 블록 효과 발생 정도에 따라 가중치를 가변적으로 설정함으로써 블록 효과가 효율적으로 감소되도록 한다. 모의 실험은 제안된 방법이 기존 방법들에 비해 우수한 블록효과 감소 성능을 가지는 것을 나타낸다.

  • PDF

The Performance Improvement of Towed Array Shape Estimation Using Kalman Filters (견인 어레이 형상 추정의 칼만 필터 접근 방법에 대한 성능 개선)

  • 박민수;도경철;오원천;윤대희;이충용
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.691-694
    • /
    • 1999
  • This paper presents a performance improvement technique of 2-D towed array shape estimation using Kalman filters. The proposed algorithm by linear model approximation corrects the position errors caused by the Kalman filter results. However, since the assumed linear model makes errors at bending parts, the spline interpolation algorithm based on curve is proposed to reduce the errors.

  • PDF