• 제목/요약/키워드: spline approximation

검색결과 110건 처리시간 0.027초

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Efficient estimation and variable selection for partially linear single-index-coefficient regression models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • 제26권1호
    • /
    • pp.69-78
    • /
    • 2019
  • A structured model with both single-index and varying coefficients is a powerful tool in modeling high dimensional data. It has been widely used because the single-index can overcome the curse of dimensionality and varying coefficients can allow nonlinear interaction effects in the model. For high dimensional index vectors, variable selection becomes an important question in the model building process. In this paper, we propose an efficient estimation and a variable selection method based on a smoothing spline approach in a partially linear single-index-coefficient regression model. We also propose an efficient algorithm for simultaneously estimating the coefficient functions in a data-adaptive lower-dimensional approximation space and selecting significant variables in the index with the adaptive LASSO penalty. The empirical performance of the proposed method is illustrated with simulated and real data examples.

등기하 해석법을 이용한 형상 최적 설계 (Shape Design Optimization using Isogeometric Analysis Method)

  • 하승현;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes

  • Poon, C.W.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.423-437
    • /
    • 2007
  • The empirical mode decomposition (EMD) method is well-known for its ability to decompose a multi-component signal into a set of intrinsic mode functions (IMFs). The method uses a sifting process in which local extrema of a signal are identified and followed by a spline fitting approximation for decomposition. This method provides an effective and robust approach for decomposing nonlinear and non-stationary signals. On the other hand, the IMF components do not automatically guarantee a well-defined physical meaning hence it is necessary to validate the IMF components carefully prior to any further processing and interpretation. In this paper, an attempt to use the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom structures is explored. It is first shown that the IMF components of the displacement and velocity responses of a nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses obtained from two-dimensional invariant manifolds. The IMF components can then be used in the context of the NNM method to estimate the properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model is used as an example to illustrate the proposed technique. Numerical results show that combining the EMD and the NNM method provides a possible means for obtaining nonlinear properties in a structure.

조세단계를 이용한 광류검출 알고리즘 (Coarse to Fine Optical Flow Detection)

  • 이희만;서정만
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.223-229
    • /
    • 2005
  • 본 논문에서는 조세단계의 광류검출 알고리즘을 제안하였다. 검출된 광류 값이 2차원 공간상에서의 영상 움직임에 대하여 신뢰성 있는 근사 값을 얻을 수 있다면 이 광류의 값은 3차원에서의 물체의 움직임에 대한 정보를 역산할 수 있을 것이나 일반적으로 이는 매우 어렵다. 본 논문에서 제안한 방범은 Horn의 방법을 이용하여 광류를 일단 검출하고 이 광류 정보와 TPS를 이용하여 초기 영상을 차기 영상이 되도록 워핑한다. 워핑된 영상과 차기 영상과의 자승평균 오차가 일정 수준 이하로 될 때 까지 이 과정을 반복한다. 이 과정은 또한 저급 해상도의 영상에서 고 해상도의 영상으로 반복된다. 본 논문에서 제안한 알고리즘은 일반 동영상에서 실험하였다. 이 알고리즘은 밀한 광류를 얻을 수 있다.

  • PDF

분산 데이터 보간을 이용한 자유 형태 곡면 생성방법 (The Generation of Free-Form Surface using Scattered Data Interpolation)

  • 이아리;박철호;심재홍
    • 한국정보처리학회논문지
    • /
    • 제6권9호
    • /
    • pp.2504-2511
    • /
    • 1999
  • 본 논문에서는 자유 형태 곡면을 설계할 수 있는 효과적인 방법으로 분산 데이터 보간 방법을 제안한다. 데이터 보간 방법은 다양한 물체를 모델링 하는데 필수적인 방법이다. 구조가 복잡한 자유형태곡면을 생성하기 위하여 기존의 방법은 제어 점의 가중치를 계산하여 물체를 나타낼 경우, 물체의 편평한 영역과 날카로운 모서리 부분이 나타나는 문제점이 있었다. 이러한 문제점을 해결하기 위해서 분산 데이터 보간을 이용하여 새로운 근사곡면 생성방법을 제시한다. 이 방법은 주어진 제어 점들과 변환된 물체상의 점에 변화영역에서 최적의 값을 가지는 주요 곡률을 계산하여 B-스플라인 보간 함수를 구하고 이을 이용하여 근사된 자료의 변화량을 계산한다. 또한 최소의 가중치를 분산 데이터 보간에 이용함으로써 보다 자연스러운 자유형태 곡면을 설계하는 방법을 제안한다.

  • PDF

블록 암호 알고리즘을 애용한 MAC 분석 (Security Analysis of MAC Algorithm using Block Cipher)

  • 서창호;윤보현;맹승렬
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.39-47
    • /
    • 2005
  • 본 논문에서는 전송되는 메시지의 무결성과 출처 인증을 위해 광범위하게 사용되는 메시지 인증 코드 (Message Authentication Code :MAC) 알고리즘을 제안하고 안전성을 분석한다. 제안된 MAC 알고리즘은 기본 블록 암호로 64-비트 블록과 56-비트 키를 가진 64비트 블록 암호 알고리즘을 이용하여 MAC 값의 길이를 64-비트와 32-비트를 사용하였을 경우의 안전성을 비교한다. 또한, 128-비트 블록과 128-비트 키를 가진 128비트 블록 암호 알고리즘을 이용하여, MAC 값의 길이를 128비트와 64-비트를 사용하였을 경우의 안전성을 비교한다 그래서 메시지의 길이와 MAC값의 길이에 따른 위장 공격의 안전성을 분석한다.

  • PDF

Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.717-727
    • /
    • 2019
  • This paper is motivated by the lack of studies in the technical literature concerning to vibration analysis of a single-layered graphene sheet (SLGS) with corner cutout based on the nonlocal elasticity model framework of classical Kirchhoff thin plate. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of the L-shape SLGS deflection field. Trimming technique is employed to create the cutout in geometry of L-shape plate. The L-shape plate is assumed to be Free (F) in the straight edges of cutout while any arbitrary boundary conditions are applied to the other four straight edges including Simply supported (S), Clamped (C) and Free (F). The Numerical studies are carried out to express the influences of the nonlocal parameter, cutout dimensions, boundary conditions and mode numbers on the variations of the natural frequencies of SLGS. It is precisely shown that these parameters have considerable effects on the free vibration behavior of the system. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems. This study serves as a benchmark for assessing the validity of numerical methods used to analyze the single-layered graphene sheet with corner cutout.

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.