• Title/Summary/Keyword: splice length

Search Result 128, Processing Time 0.023 seconds

An Experimental Study on the Effect of Tie-wire on R/C Beam Behaviors (결속선이 R/C보의 거동에 미치는 영향에 대한 실험적 연구)

  • 변항룡;공귀옥;김준성;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.737-742
    • /
    • 1997
  • In this paper the effect of tie wire in lap spliced bars is investigated by experiment. The variables considered in the beam behaviors are beam dimension, lapped splice length and numbers of tie wire. 3 test pieces having the same variables consist one series and a total of 6 series ar tested. The test results show the beam behavior is not affected by numbers of tie wire but by the manner of tie. It was revealed hat the load bearing capacity of the beam is increased when the tie wire is extended to top bar.

  • PDF

Effect of Flexural Performance on U-Shaped Precast Concrete Beams with Noncontact Lapped Splice (비접촉 겹침 이음된 프리캐스트 U형 보의 휨성능에 미치는 효과)

  • Ha, Sang-Su;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.119-128
    • /
    • 2008
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-shaped PC beam. To evaluate the performance for noncontact lapped splice, experimental and analytical works were conducted. Major variables for tests are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. Analytic research was performed nonlinear finite element method. Analytic research focused on crack pattern, load-deflection curve, comparison of internal force, evaluation of ductility strains of reinforcement bar. Results of experimental and analytical works show that the these variables has much influence on flexural strength and ductility, and joint behavior.

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

Bidirectional Lateral Loading of RC Columns with Short Lap Splices (겹침이음 길이가 짧은 RC 기둥의 이방향 횡하중 가력 실험)

  • Lee, Chang Seok;Park, Yi Seul;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Reinforced concrete (RC) buildings built in the 1980s are vulnerable to seismic behavior because they were designed without any consideration of seismic loads. These buildings have widely spaced transverse reinforcements and a short lap splice length of longitudinal reinforcements, which makes them vulnerable to severe damage or even collapse during earthquakes. The purpose of this study is to investigate the impact of bidirectional lateral loads on RC columns with deficient reinforcement details. An experimental test was conducted for two full-scale RC column specimens. The test results of deficient RC columns revealed that bidirectional loading deteriorates the seismic capacity when compared with a column tested unidirectionally. Modeling parameters were extracted from the tested load-displacement response and compared with those proposed in performance-based design standards. The modeling parameters proposed in the standards underestimated the deformation capacity of tested specimens by nearly 50% and overestimated the strength capacity by 15 to 20%.

Behavior of Solid and Hollow Rectangular RC Piers with 50% of Lap-Spliced Longitudinal Bars (50%주철근 겹침이음을 갖는 중실 및 중공 사각단면 교각의 거동특성)

  • 김익현;이종석;이윤복;김원섭;선창호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.25-35
    • /
    • 2003
  • Scale model tests were performed to investigate the seismic behavior of the solid and hollow rectangular RC piers with 50% of lap-spliced longitudinal bars in plastic hinge regions. Continuous bars and lap-spliced ones with a lap length of 39 times the bar diameter were arranged alternately in the sections. In order to clarify the influence of lap splice on a ductility the effect of axial force and lateral confinement were excluded in the test. The typical flexural failure conducting a ductile behavior were observed in both models. It is confirmed that the 50% of lap-spliced bars can be considered as an alternative of seismic detailing for longitudinal bars.

Fatigue crack growth and remaining life estimation of AVLB components

  • Chen, Hung-Liang Roger;Choi, Jeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.651-674
    • /
    • 2006
  • The fatigue cracks initiate and propagate in the Armored Vehicle Launch Bridge (AVLB) components, especially like the splice doubler angle, splice plate, and bottom chord, due to the cyclic loading by repeated AVLB-launchings and tank-crossings. In this study, laboratory fatigue tests were conducted on six aluminum 2014-T6, four aluminum 7050-T76511, and four ASTM A36 steel compact-tension specimens to evaluate the crack growth behavior of the materials used for the components. The experimental results provide the relationship (Paris Law) between crack growth rate, da/dn, and stress intensity range, ${\Delta}K$, whose material dependent constants C and m can later be used in the life estimation of the components. Finite Element Method (FEM) was used to obtain the stress intensity factor, K, of the components with cracks. Because of the complexity of loading conditions and component geometry, several assumptions and simplifications are made in the FEM modeling. The FEM results, along with the results obtained from laboratory fatigue tests, are then utilized to estimate critical crack length and remaining life of the components.

Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming

  • Golafshani, Emadaldin Mohammadi;Rahai, Alireza;Kebria, Seyedeh Somayeh Hosseini
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents the application of multi-gene genetic programming (MGP) technique for modeling the bond strength of ribbed steel bars in concrete. In this regard, the experimental data of 264 splice beam tests from different technical papers were used for training, validating and testing the model. Seven basic parameters affecting on the bond strength of steel bars were selected as input parameters. These parameters are diameter, relative rib area and yield strength of steel bar, minimum concrete cover to bar diameter ratio, splice length to bar diameter ratio, concrete compressive strength and transverse reinforcement index. The results show that the proposed MGP model can be alternative approach for predicting the bond strength of ribbed steel bars in concrete. Moreover, the performance of the developed model was compared with the building codes' empirical equations for a complete comparison. The study concludes that the proposed MGP model predicts the bond strength of ribbed steel bars better than the existing building codes' equations. Using the proposed MGP model and building codes' equations, a parametric study was also conducted to investigate the trend of the input variables on the bond strength of ribbed steel bars in concrete.

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.

Evaluation on Stiffness of Mechanical Sleeve Bar Splice Filling High-strength Mortar Under Monotonic Loading (고강도 모르타르를 충전한 기계적 슬리브 철근이음에 대한 단조가력 하에서의 강성 평가)

  • Kim, Hyong Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.79-88
    • /
    • 2012
  • The purpose of this study is to evaluate the stiffness of the mechanical sleeve reinforcement splices filling high-strength mortar under monotonic loading. For this objective, we analyzed and compared the previous test data of 189 actual-sized mortar-filled sleeve bar splices specimens, including the reinforcing bar splices prepared and tested by the author. The paper results indicated that the minimum values of compressive strength of mortar($f_g$) multiplied by the ratio of reinforcement development length to bar diameter(L/d) were suggested for holding the stiffness of the mortar-filled sleeve reinforcement splices required in AIJ code.

Multiple transcripts of anoctamin genes expressed in the mouse submandibular salivary gland

  • Han, Ji-Hye;Kim, Hye-Mi;Seo, Deog-Gyu;Lee, Gene;Jeung, Eui-Bae;Yu, Frank H.
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Purpose: Salivary fluid formation is primarily driven by Ca2+-activated, apical efflux of chloride into the lumen of the salivary acinus. The anoctamin1 protein is an anion channel with properties resembling the endogenous calcium-activated chloride channels. In order to better understand the role of anoctamin proteins in salivary exocrine secretion, the expression of the ten members of the anoctamin gene family in the mouse submandibular gland was studied. Methods: Total RNA extracted from mouse submandibular salivary glands was reverse transcribed using primer pairs to amplify the full-length coding regions of each anoctamin gene and was subcloned into plasmid vectors for DNA sequencing. Alternative splice variants were also screened by polymerase chain reaction using primer pairs that amplified six overlapping regions of the complementary DNA of each anoctamin gene, spanning multiple exons. Results: Multiple anoctamin transcripts were found in the mouse submandibular salivary gland, including full-length transcripts of anoctamin1, anoctamin3, anoctamin4, anoctamin5, anoctamin6, anoctamin9, and anoctamin10. Exon-skipping splicing in the N-terminal exons of the anoctamins1, anoctamin5, and anoctamin6 genes resulted in multiple alternative splice variants. No expression of anoctamin2, anoctamin7, or anoctamin8 was found. Conclusions: The predominant anoctamin transcript expressed in the mouse submandibular gland is anoctamin1ac. The chloride channel protein produced by anoctamin1ac is likely responsible for the $Ca^{2+}$-activated chloride efflux, which is the rate-limiting step in salivary exocrine secretion.