• Title/Summary/Keyword: spiral galaxies

Search Result 147, Processing Time 0.022 seconds

EMISSION LINE SPECTROSCOPY WITH THE 1.8M OPTICAL TELESCOPE (1.8m 망원경을 이용한 방출선 천체 연구)

  • HYUNG SIEK;ALLER LAWRENCE H.;KIM KANG-MIN
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.61-71
    • /
    • 2000
  • The emission line objects such as planetary nebulae, symbiotics, gaseous nebulae, HII regions, novae, supernovae, SNRs, nearby spiral galaxies, dIrr, dE, and nearby active galactic nuclei, would be goldmines for us to dig with the 1.8m bohyunsan optical (BOAO) telescope. We discussed the importance of strategically important diagnostic lines and atomic constant calculation for a study of Galactic and extragalactic emission objects. The scientific background on a spectrometer development history is briefly presented and spectroscopic research areas other than the emission objects are also summarized.

  • PDF

A Model of the Mass Distribution of the Galaxy-III (은하계(銀河系)의 질량분포(質量分布) 모형(模型)-III)

  • Yu, Kyung-Loh;Kang, Yong-Hee
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.3-9
    • /
    • 1975
  • Densities of the three constituent spheroids of the same eccentricity as our earlier model of the Galaxy are assumed to be given by an analytical form of $_{{\rho}i}$(r)=$k_ie^{-m_ir^u{_i}}$, where $k_i,\;m_i$, and ${\alpha}i$ are obtained by comparing with the results of the previous model. Using three values of $_{{\rho}i}$(r) the galactic rotation curve, mass of each spheroid and the whole Galaxy are calculated, and the three dimensional density distribution in the Galaxy is also obtained. The calculated rotation curve of the model Galaxy is in good agreement with the observed curve, and the shape of the cross section of the model Galaxy given by the computed density is very similar to the inferred shape of the spiral galaxies.

  • PDF

ON THE ORIGIN OF THE NEUTRAL HYDROGEN SUPERSHELLS

  • Elias, Federico;Silich, Sergiy;Franco, Jose
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.141-145
    • /
    • 2007
  • Here we analyze if the ionized shells associated with giant HII regions represent the progenitors of the larger neutral hydrogen supershells detected in the Milky Way and other spiral and dwarf irregular galaxies. We calculate the evolutionary tracks that 12 HII shells found by Relano et al. (2005, 2007) would have if they expanded into the interstellar medium because of multiple supernovae explosions occurring inside the cavity. We find, contrary to Relano et al. (2007), that the evolutionary tracks of these HII shells are inconsistent with the observed parameters of the largest and most massive neutral hydrogen supershells. Thus, an additional energy source to the multiple supernovae explosions is required in order to explain the origin of the most massive neutral hydrogen shells.

STRUCTURE OF THE SPIRAL GALAXY NGC 300 -1. The generalzation of Toomre's mass model-

  • Rhee, Myung-Hyun;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.11-29
    • /
    • 1992
  • In 1963, Toomre built up classes of mass models for the highly flattened galaxies which have free parameters n, $a_n$ and $C_n$. In order to keep the universal dimension, we adopt parameters $b_n({C_n}^2={a_n}^{2n}+^2{b_n}^2/(n-1)!)$ insteal of $C_n$. Series of the normalized Toomre's mass models (G = $V_{max}$ =$R_{max}$ = 1, n = 1 to 7) are derived and the normalized parameters $a_n$ and $b_n$ are determined by the iteration method. Replacing parameters $a_n$ and $b_n$ to ${a_n}^l(=a_nr_{max})$ and ${b_n}^l(=b_n\cdotV_{max}/r_{max})$, we can get the generalization of Toomre's mass model.

  • PDF

Galaxy formation in the 21st century

  • Yi, Sukyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.29.1-29.1
    • /
    • 2018
  • With their complex structure that includes a thin disc, spiral arms, and often a bar, galaxies have been regarded as something beyond the human perceptions. Hence, the studies on galaxy formation in the 20th century have almost exclusively based on schematic scenarios. With markedly improved knowledge on cosmology over the last couple of decades, we have finally acquired a base from which galaxy formation can be studied from the first principles of physics. I review the modern history of the study of galaxy formation and present some preliminary results from the most recent numerical simulations that provide more realistic pictures of galaxy formation than was available ever before. In terms of galaxy formation, the age of scenarios is fading away, while the age of physical understanding is rising over the horizon.

  • PDF

On the origin of the thick discs of spiral galaxies from high-resolution cosmological simulations

  • Yi, Sukyoung K.;Park, Min-Jung;Peirani, Sebastien;Pichon, Christophe;Dubois, Yohan;Choi, Hoseung;Devriendt, Julien;Kimm, Taysun;Kaviraj, Sugata;Kraljic, Katarina;Volonteri, Marta
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.3-38
    • /
    • 2020
  • Ever since thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than 10^10 solar mass in recent cosmological high-resolution (>34 pc) zoom-in simulations: Galactica and New Horizon. The thin and thick disks are reproduced by the simulations with scale heights and luminosity ratios that are in reasonable agreement with observations. When we spatially classify the disk stars into thin and thick disks by their heights from the galactic plane, the "thick" disk stars are older, less metal-rich, kinematically hotter, and higher in accreted star fraction than the "thin" disk counterparts. However, we found that the the thick disk stars were spatially and kinematically thinner when they were born. Indeed, a large fraction of thick disk stars was born near the galactic plane at earlier times and get heated with time, eventually occupying high altitudes and exhibiting different population properties compared to the thin-disk stars. In conclusion, from our simulations, the thin and thick disk components are not entirely distinct at birth, but rather a result of the time evolution of the stars born in the main disk of the galaxy. (excerpted from the abstract of the upcoming paper submitted to Astrophysical Journal: Park, M.-J., Yi, S.K. et al. 2020)

  • PDF

Preliminary design of control software for SDSS-V Local Volume Mapper Instrument

  • Kim, Changgon;Ji, Tae-geun;Ahn, Hojae;Yang, Mingyeong;Lee, Sumin;Kim, Taeeun;Pak, Soojong;Konidaris, Nicholas P.;Drory, Niv;Froning, Cynthia S.;Hebert, Anthony;Bilgi, Pavan;Blanc, Guillermo A.;Lanz, Alicia E.;Hull, Charles L;Kollmeier, Juna A.;Ramirez, Solange;Wachter, Stefanie;Kreckel, Kathryn;Pellegrini, Eric;Almeida, Andr'es;Case, Scott;Zhelem, Ross;Feger, Tobias;Lawrence, Jon;Lesser, Michael;Herbst, Tom;Sanchez-Gallego, Jose;Bershady, Matthew A;Chattopadhyay, Sabyasachi;Hauser, Andrew;Smith, Michael;Wolf, Marsha J;Yan, Renbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2021
  • The Local Volume Mapper(LVM) project in the fifth iteration of the Sloan Digital Sky Survey (SDSS-V) will produce large integral-field spectroscopic survey data to understand the physical conditions of the interstellar medium in the Milky Way, the Magellanic Clouds, and other local-volume galaxies. We are developing the LVM Instrument control software. The architecture design of the software follows a hierarchical structure in which the high-level software packages interact with the low-level and mid-level software and hardware components. We adopt the spiral software development model in which the software evolves by iteration of sequential processes, i.e., software requirement analysis, design, code generation, and testing. This spiral model ensures that even after being commissioned, the software can be revised according to new operational requirements. We designed the software by using the Unified Modeling Language, which can visualize functional interactions in structure diagrams. We plan to use the SDSS software framework CLU for the interaction between components, based on the RabbitMQ that implemented the Advanced Message Queuing Protocol (AMQP).

  • PDF

Carnegie Hubble Program II : Overview and Research Status

  • Yang, Soung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.46.4-47
    • /
    • 2015
  • Carnegie Hubble Program II (hereafter CHP II) is a large Hubble Space Telescope (HST) observing campaign in the cycle 22 composed of a total of 184 orbits (132 primes + 52 parallels), which aims to measure H0 directly with an unprecedented accuracy. Unlike our previous efforts in CHP I which used Cepheids as a yardstick, CHP II takes the Population II (Pop II) distance indicators such as RR Lyraes and tip of the red giant branch stars (TRGBs) to set up a new calibration to Type Ia supernovae (SN Ia) distance. The Pop II distance scales have two immediate advantages over the classical Cepheid method: 1) The period-luminosity relation of the RR Lyrae has a scatter that is a factor of 2 smaller; 2) The RR Lyrae/TRGB distance scale can be applied to both elliptical and spiral galaxies. This will provide a great systematic benefit by ultimately allowing us to double the number of SN Ia distances based on geometry. By taking advantage of this Pop II route, we expect to measure H0 value to 3 % of error which will be the highest accuracy H0 measurement to date using the "Distance Ladder" method. In this talk I will present a brief background/overview on the CHP II, observations/data acquisition status, and ongoing research progress/preliminary results.

  • PDF

Constraints on Cosmological Models from the Large-Scale Velocity Field

  • Doh, Jean-Gyung;Park, Changbom-;Chun, Mun-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.16-16
    • /
    • 1993
  • The Cosmic Mach number M is the ratio of the bulk flow velocity of the galaxrvelocity field on some scale R to the unall scale velocity dispersion within refcions of scale R. Because M is the ratio of two velocities, it is inn-dimansionat and the Here, independent of the amplitude of the power specHim and of the biasplnmeter in the linear theory. We have measured the Mach rnlmber for two observational samples: a spiral galaxy sample(AHM) of Aaronson and hiscoBlaborators with absolute distances measured by the infrared Ttillr-Fisher relatioa and an elliptical galaxy sample(EGALS) of Faber or 0, with distances determined by the relation. The effective depths distances of galaxies from the Local Group of these samples are 1639 km/s and 2862 e/s, respectivelr. The Machnumbers from these observed peculiar velocity Selds He fund as M=0.95 for AHMand M=0.59 for EGALS. We comPBre these calculated Mach numbers with thosefrom meck surweys drawn fuom three cosnulogical medels: the stand8rd biased nh=0.5 CDM modet an open CDM rrudel with gh=0.2, and a medd with thepower-law power specelm P(k)-k-1 and n=1. The Mach rnlmber test can give robust constraints on these cosmelogical nudels whose power spectra have very different shapes at large scales.

  • PDF

The first of its kind metallicity map of the Large Magellanic Cloud

  • Choudhury, Samyaday;Subramaniam, Annapurni;Cole, Andrew A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.30.1-30.1
    • /
    • 2016
  • We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind, high-spatial resolution map of metallicity up to a radius of $4^{\circ}-5^{\circ}$, derived using large area photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. The RGB is identified in the V, (V - I) colour- magnitude diagrams of small subregions of varying sizes in both data sets. The slope of the RGB is used as an indicator of the mean metallicity of a subregion, and it is calibrated to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The mean metallicity of the LMC is found to be [Fe/H] = -0.37 dex (${\sigma}[Fe/H]=0.12$) from MCPS data, and [Fe/H] = -0.39 dex (${\sigma}[Fe/H]=0.10$) from OGLE III data. The bar is found to have an uniform and higher metallicity compared to the disk, and is indicative of an active bar in the past. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc ($-0.049{\pm}0.002$ dex kpc-1 to $-0.066{\pm}0.006$ dex kpc-1). This metallicity gradient of the LMC disk, though shallow, resembles the gradient seen in spiral galaxies, and similar to that found in our Galaxy.

  • PDF