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ABSTRACT

In 1963, Toomre built up classes of mass models for the highly flat-
tened galaxies which have free parameters n, a, and Cy. In order
to keep the universal dimension, we adopt parameters b,(CZ =
a2rt2p2 /(n — 1))) instead of . Series of the normalized
Toomre’s mass models (G = Vs = Bmar = 1, n = 1 to 7)
are derived and the normalized parameters a,, and b, are deter-
mined by ihe iteration method. Replacing parameters a, and
by Lo al{= anTmar) and b, (= bn - Vinas /Tmaz ), we can get the
generalization of Toomre’s mass model.

1. INTRODUCTION

The pioneering work of the mass calculation of M31 by Bobcock in 1939 was the first effort
lo get the mass distribution in spiral galaxies, This work was extended by Wyse, Mayall,
Lohmann, Schmidt and Burbidge to get mass models. Brandt and his collegues made mass
models after modifying Burbidge et ol’s (1959) mass model (Brandl 1960, Brandt and
Belion 1962, Brandt and Scheer 1965). Takase and Kinoshila (1967) extended the Brandt’s
mass model io apply to the rotation energy and the angular momentumn:.

Toornre (1963) made a new mass model using the Bessel function. His model was consisted
with the rotation velocity and the surface density (n, an, Cr). The n is defined as a number
parameter, and where n is 1 we call it the Toomre’s mass model 1 and where n is infinitive
then il will be called as a Gausgsian model. After Shu (1969) used the Toomre’s mass model
1 to the dynamical structure of the Galaxy, many authors have used this model to study the
dynamical slructure of spiral galaxies. Athanassoula and Sellwood (1986) used the Toomre’s
mass model 1 to test the instabilify of the disk, and Johns and Nelson (1986) used this model
to the density wave o form spiral arms. Nordsieck (1973 a, b) modified the Toomre’s mass
model 1 and applied his new model to 17 galaxies to gel the angular momentum, radial
velocilies and integrated masses.
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In this paper we normalized 3 parameters (n, a,, Cy,) of the Toomre’s mass maodel and
tried to get the total mass, integraled mass, surface density, space density, rotation velocity,
angular momentum, rotation energy, angular velocity and the epicyclic frequency. On the
generalization of the mass model we changed 3 parameters (n, a,, C,) to (n, af, 8],) where
ay is the distance unit, b, is the angular velocity unit and n is the parameter to define the
rotation curve.

2. GENERALIZATION OF THE TOOMRE’S MASS MODEL

2.1 Toomre's Mass Model
Toomre’s mass model assumed the balance of the centrifugal acceleration and the gravi-
tational acceleration in the disk.

V2(r) 5%
e
£=0

r

where V(r) is the rotation velocity, r is the radial distance and ® = ¢(r, z) is the gravitational
potential.
Mass du(r) to the unit area in the thin disk can be defined as

k
= mh(k?‘)dk (2)

1 a

where J, is the Bessel Tunction.
If there does not exist any materials outside the disk, then the gravitational potential
equation will satisfy the Poisson equation. So the surface mass density will be as

u(r) = /0 " L (rk)RS(E) b (3)
where

S(k) = /0 " o) @)
The real potential can be expressed as equation (5).

Dir,2) = QWG‘/O‘OO Ji{rk)S(k)ezp(—k | z |)dk (5)

oo

gr

e fu " (k)R S(E)dk (6)

Z=0
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and equation (1) can rewrite as

Vz(”) f Ji(rk)k / V2{u)Jy (ku)dudk (7)

Using this equation we can get the surface mass density u(r) as equation (8).

plr) = —-% /000 Jo(rk)k/(]m V2 (w) J1(ku)dudk (8)

If we give the boundary condition as V(0) = V(eo) = 0, then equation (8) will be transfer
to equation {9) as

GE L
W) = e /0 S H(u, )du (9)
where

T R(1/2,1/2; 150 /r) = (2/ar) K (ufr) when u < ¢

HOD = | (12,172 152ty = (2/mr)K(r/u) when u > r

The rotation velocity profile can be defined as equation (10).

Ary = VE(r) = CR(1 4 r2/a?) 112 (10)

where Cp and a are constant values. In this case equation(8) can rewrite as equation (11)

[
a0

where the Bessel function I1y2 and K3 are defined as

-1/2
2
1+ Z—ZJ Ji(ku)du = Cgafl/z [éka} Kiype [%kc{l (11)

Iya(z) = (2/may' /2 sinh e,
I‘i—l/z(ﬂ')) = (Tr/zr_)l/?e-m

If we put this Bessel Function to the equation (8), then

po(r) = %fuwu — e V1o (rk)dk (12)

where I3 e Jo(rk)dE = (a® 4 r?)-1/2
So we can rewrite the equation (12) as

cZ |1
o) = 525 |2

~ (a® + rﬂ)—lﬂ] (13)
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Equations (10) and (13) are special functions of the Toomre’s mass model, and we can
get the Toomre’s mass model 1 as

VE(r) = (Cifa)r?*(a® + '{'2)_3!2
(14)

(r) = Ct 2 a3
= T)ﬂQWG(a +r)

and the Toomre’s mass model n can be expressed as equations (15) and (16).

Vir)=C2 [—B%JM H%Z.] (a2 + rz)—3f2} (15)

9 n—1
pnl0) = 5225 [_525] (a + %)= 2} (16)

2.2 Normalization of the Toomre’s Mass Model

As in equations (15) and (16), Toomre’s mass model was made with 3 parameters
(n,an,Cy), and n is a parameter of the decline after maximum value in a rotation ve-
locity curve. The ap, is the distance unit which is correlated with the radial distance (rpaz)
to the maximum rotation velacity (Vi,ax). The C, 1s a parameter which is connected with
Vinae 8nd Tmgz, and it 1s changeable to the mass model.

For the practical use we change the C, to b,. The derived correlation between C,, and
by s as equation (17).

Cr? - (n_l 1)|| aiﬂ-’-z - 61'21. (1?)

2.2.1 Rotalion velecity and normalization factors a,, and b,.

We raade a differential caleulns to the equation (15) from n=1 to n=7 and calculated
the an (rmaz) from ihe condition of dV,,(r)/dr = 0. In models 1 and 2 we can get easily
@y = tn{7mas) because the equation dV;,(r)/dr = 0 has an analytic solution. In models 3
to 7, however, we get approximate solulions using the Newton-Rapson method. Rotation
velocity equations and equations of dV.(r)/dr = 0 from models 1 to 7 are listed in an
Appendix A.

Tor the practical use we changed the equation (15) to equation (18) as

Vilr) = r?t? ni:l (?;(; ijj__gil)(éii]?!(l 4 72 a2y~ (18)

We plotted rotation velocities of models 1 to 7 in Figure 1 and see that rotation curves
decline rapidly to the increased parameter n.
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Figure 1. Normalized rotation velocity curves to the radial distance. n is a model param-
eter to define a shape of curves.

2.2.2 Surface density.

Equation (16) was converted to equation {19) for the practical use as
bla  (2n—1)!

) = G G T — DT 21

i+ r fa?y~ /) (19)

Appendix B is a list of surface density equations and the surface density curve to the
radial distance is plotted in Figure 2. Model 1 has the highest central surface density, while
model 7 has the least one.

2.2.8 Space density
Space density was estimated from the solution of the Poisson equation of the Kuzmin-
Toomre’s potential. Space density equation was made through equations of (20) to (23).

__ GM
(r2 + a2)i/2

‘I’ _ a?n a " &y (») 91
n(r)—_(nﬂl)! _W a? ( )

$y(r) = (20)
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Surface density

40
R
Figure 2. Normalized surface density curves.
V2%, (r) = —47Gpl(r) (22)
where
2n
fea_ @t M- (@nt+ 1) o o yag
Pn.(r) = mn — 1)! on-1 (r /a”)
U
Pn("") = bn (23)
Fo

where q, = ¢fa = (1 — e%)1/2. Equation (23) is quite similar 1o a space density equation of
Belton and Brandt’s (1963). Shu et al. (1971) adapted a variable a = [w? + z2/(1 — £2)]%/?
to get the space density.

In an Appendix C we listed space density equations and Figure 3 is the space density

curves of models 1 to 7.



SPIRAL GALAXY NGC 300 17
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Figure 3. Normalized space density curves.

2.2.4 Total mass

A total mass could be calculated through equations (24) to (26).

r V2)

where
P rn—1 1
. 2 T 2 __~ e —
6 n-1 1
—fey_ 2 -
=Cy aag] ar
n—1
[ o171
My = ‘5[‘5{2] a
2 ke
= 2 1] gem-5)- @ (29)

m=2
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Figure 4. Normalized integrated mass curves.

where
L1 9n — NI
l l —(2m—3) = (2n )!

il (n— 1)l 2277

If we replace C, to b,, then we can get the equation (26) as
(2n —2)!
{(n— 11 22127

Model 1 has about 2 time more total mass than model T (A4 /3 = 0.5071).
Appendix D is total mass equations.

My = 0% a® (26}
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2.2.5 Integrated mass
The integrated mass within a radial distance r from the galactic centre can be described

as

M(r):/ 2rrp(r)dr
0
372 2y(2n-1)/2 _ ,2(n+1) — 13l
b?[a®*(a® + r?) a 1(2n - 1)! (27

T 910G (20 — D(a® + r)n=173[(n — 1)1

We listed integrated mass equations in Appendix E and plotted integrated mass curves

to the radial distance in Figure 4.

Ratio of the integrated mass to the total mass M (r)/My is a good parameter to indicate
the central mass concentration. In Figure 5 we plotted this ratio to the radial distance.
From this figure we can see that the more n value, the higher central concentration.

M(R)/M,,

Fignre 5. Ratics of the integrated mass to the total mass curves.
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2.2.6 Angular momenium
Angular momenium at the radial distance r from a galactic centre is defined as

r

H(r) = /Gr rV(r) dM(r) = 271'/0 P2V (r)p{r)dr (28)

To get the total angular momentum we used an equation suggested by Saslaw (1985) as

2 1/4
— | 29

Hr =

where p,,(0) is a central surface densily and My is a total mass. We listed total angular
romentum equations in Appendix F and plotted this to the model parameter n in Figure
6.

2.2.7 Holation energy
Rotation energy of a galaxy can be calculated through an equation {30) as

E(r) = % /D CV2r)dM () = 7 fo V) (30)

Total rotation energy was estimated from the integration of equation (31) as

Ep = w];r PV u(r)ydr (31)

We listed total rotation energy equations to the model parameter n in an Appendix G and
plotted this in Figure 7.

2.2.8 Centrifugal force
The centrifugal force F(r) can be described as equation (32) as

Fry= L0 622(27(;2_321)%1*1]” (1472000 (3)

We plotted the generalized centrifugal foree curve in Figure 8.

2.2.9 Angular velocity and epicyclic frequency
An epicyclic frequency x(r) is expressed in equation (33) as

K2(r) = 402%(r) [1 +3 Q’"(T) dg;g’")] (33)
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Figure 7. Normalized rotation energy curves.
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Figure 9. Angular velocity and the Lindblad resonance curves of the normalized mass model 1.
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Angular Velecity

Figore 10. Same as in Figure % of the case of model 7.

where Q(r) is an angular velocity. We listed epicyclic frequency equations in an Appendix

H.
Figure 9 and Figure 10 are plotiings of angular velocity ©(r) curves and the Lindblad

resonance §3(r) -k £/2 carves to model parameters 1 and 7, respectively.

3. CONCLUSION
All equations after the normalization of the Toomre’s mass model can be defined from

3 parameters (n,a,, b,). If we change normalization values Vingz, "mar and G to observed
values, then a, and b, can be rewrited as

b;:bn-

rm ax

The rotation velocity curve, which can be obtained {rom the optical and vadic observa-
tiouns, will be fitted to gel the model parameter n. A polynomial fikting to the rotation curve
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will be possible o estimate Viyau, Pinee and 3 paremetss (n, a,, b,). Using these parameters
we can calculate physical and dynamical values of a sample galaxy.
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Appendix A; Rotalion velocity equalions to the model parameter n.

VE(r) = r2b2(1 4 22 /ad) 32
a; = ""rr.',az/'\/§
r2bZai(r? + 403)
VE(r) = — e
2r? + af)
(23/2 +2. 31/2)1[2

42 = 9574 Tmaz
V() = 3r2b2ad(4r®ad + r* + 8ai)
3 8(7‘2 +a3)7/*
= d?‘zl‘rmﬂar 6{‘711.21: T?‘J’aam + 165.?3 = 0
VA(r) r*biad(48raf + 24r%ad + 5r° + 64al)
T 16(+2 + aﬁ)w
= —QaG?mm — Qﬁrmw% SQrmm STMM + 12&12 =0
V()  DVBA0Z8r S o Dafr’ 4 40r%a] + Tr® + 128a)
® 128(r% + aZ)lI /3
ab = —640r2, a% — 320 ol — 16078, «a

— B0rmar8al — Trid 2564 =0

y2(r) = Va8 (6407 %a] + 640 %a8 + 400r°af + 1407%ag + 21710 + 51203)
° 256(:~2 T al )13f°
af = — 3072r% a2 — 1020¢2 af — 128005 oS — 600+, aj
— 168710 a2 — 21212 4 1024a}® =

malr

TrbEa3(1536r2al? 4 1920r%a} 4 16007908
Vi) = +840r%a% + 25271%2 + 337,12 - 1024 + al?)
7 ('I’) - 1024(?..2 + aE)lS/"
a7 = — T168r% at? — 5376r} i’ — 448075 a
— 28002 _ab —1176rp0010ad — 204712 4 2 — 3302

maz mar

+2048alt =0

(AL}

(42)

(43)

(44)

(45)

(A6)

(A7)
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Appendix B; Surface density equations

() = ek (14 1%al)
! 2ndd 1

()= 35 (1.4 42 jayor2
HA = G 1

15&362 _
palr) = S (1+ 72 /0f) "2

. 350’.453

wa(r) = 5500 (1+ rz,/aﬁ)—g/z

_ 315a5b2
Hslr) = e

(14 r2fad)-11/2

_ 693agh? 2 2v-13/2
mo(r) = g (1+r7/ad)

_ 3003ab3 2/ 9\—15/%
#i{1) = Snggeg (LHT07)

Appendix C; Space densily equalions

_B3aiMyi, 5 4 —3/2
pi() = g (7 00)
( )_ 1503[1{3( 9 2N-T/2
pRT) = §mgo T a)
_ 105a3M3, o 2y—8/2
pa(r) = W(" + a3)
_ 945a5 My 2 2y~ 11/2
P40) = T (00
_ 1039a°Ms | o 2y-13/2
ps{r) = m(r +az)
135135aL2 A1, 2
po(r) = ~Jeaeo (" +ad) 1

15360rqo

(81)

(82)

(83)

(B4)

(BT)

(C1)

(¢'2)

(©3)

(C'4)

(C5)

(C6)
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2027025ai* M~ _
P1r) = Hgaings DT (1)

Appendix D; Total mass equations

312
ayby

Myp(1) = (D1)
Mr(2) = “Eé% (D2)
Mz(3) = 3‘18%;’% (D3)
Mp(4) = 51“ 6‘3‘? (D4)
My(5) = 315;8%% (D5)
M (7) = ?%fg (D7)

Appendix E; Integrated mass equations
Mi(r) = Ba¥(—ar + (] + 1) Y)/(G(d + 7)) (1)
Ma(r) = Bad(—ad + (ad #2712/ (263 + r2)¥?) (2)
M(r) = 3b2a3(—af + (a3 + r*)*/%)/(8G(a] + 7)) (E3)
Mj(r) = 5b3al(—aj + (af + r*)*)/(16G(ad + 7*)7/%) (£4)

My(r) = 85b3a(—a3 + (a} + 7))/ (128G (aE + r)*1?) (25)
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Mi(r) = 63bgag(~ag" + (af +r*)"M7) /(266G (al -+ ¢2)11/2)
Mq(r) = 2810%a3(—a3” + (a? + #?)1%/%) /(1024G (a2 + r2)13/2)

Appendix F; Total angular morentum equations

21/4
Mrp(1) = HG_aﬁb-;’
41410 7/4
167413717
Mr(3) = [E] [g] Lot}
321415717741
d
2561447 35 17/% 1
5127916377 1
Mz (6) = {m [*5—6] Goeht
20487241 931774 1
My (T) = [3003] [102 } Gt

adipd
Er1) = slal
5a3b
£r(2) 642(}’2
63036
Er(3)

(E6)

(E7)

(F'1)

(£2)

(F'3)

(F4)

(F'5)

(F'6)

(F'7)

(G1)

(G2)

(63)
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A20a365
4) =
Be4) = i (©4)
12155a3b
Br(5) = Seotamac (G5)
88179486
Br®) = Sosrinec (c6)
1300075a8b%
#1(7) = 33354030 (@)
Appendix H; Epicycle frequency equalions to the model parameter n.
44 r2/ad
.2 — 2.0 1
£i(r) = Qi(r) [m] (H1)
4 2.27a,4
2, v 2 r* 4 2o5r°1005
K:E(’r) - Q?(T) L,,4 + 5[1%7’2 + 4(1% (H]‘)
3 8+ 32ad + 4riad)
260 — 2 {r° + 32a3 3
w3 = O T g e 4 D) (#3)
256af + br® + 48r%a — 320208 + 26r%0)
20y = ( 1 4 4 E
mA(r) = ) g T 24097 T 575 GAag)(r? + al) (H4)
w10 4 F15,10 46 B4 4 AdpBg2 8 2
R2r) = (1) (Tr1° + 512a3" + 128r*af -+ 112r%af + 44082 IZSGET’ ] (H5)
(128208 + 96adrt + 40rfa2 + Tr8 + 128af)(»2 + af)

K2(r) = Q3() (2018a}? + 2172 + 640r*af — 768a3"? + 800r%af + 180r8ad + 15411%32)
BT e (6407r2a§ + 840r%ag + 400r%ad + 140r8a3 + 21118 + 512410} (r2 + a2}

HE)
(4096al* + 33+1* + 15367210 — 2048412
25607%a% + 2080r%af + 1008-1%% + 276r'%a?)
30y = 02 + 7 7 7 7 o
wi(r) #(r) (1536ai” + 1920r1a8 4 160075a8 + 84 f0r8a? + 252¢10,2 (H7)

+ 33r'? +1024a?) (r? + a2)



