• 제목/요약/키워드: spindle speed

검색결과 618건 처리시간 0.024초

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

고속 정밀 가공기의 공구셋업 측정기술 (Tool-Setup Measurement Technology of High Speed Precision Machining Tool)

  • 박경택;신영재;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

IT 부품용 마그네슘 합금의 고속 탭핑가공에 관한 연구 (A Study on the High Speed Tapping of Magnesium Alloy for IT Parts)

  • 이상민;박휘근;이원석;김택수;채승수;이충석;백영종;조현택;이영식;이종찬
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2012
  • This paper reports some experimental results in high speed rigid tapping of magnesium alloy(AZ91D). M3 spiral tap and high speed spindle tapping center of gantry type were used in experiments and thrust forces were measured. The experimental results indicate that the thrust forces are proportional to the spindle speed and depth of cut. The thrust forces increase as the depth of cut increases. M3 Tapping was achieved at the spindle speed of 10,000rpm, depth of cut of 1.5D and total stroke of 32mm.

냉장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 구조 특성 해석 (Structural Characteristics Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.326-333
    • /
    • 2004
  • This paper presents the structural characteristics analysis of a high-speed horizontal machining center with spindle speed of 50, 000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motor and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guide. The structural analysis model of the high-speed horizontal machining center is constructed by the finite element method, and the validity of structural design is estimated based on the structural deformation of the high-speed horizontal machining center and spindle nose caused by the gravity and inertia forces.

  • PDF

고속 머시닝센터의 주축계 진동특성과 가공성 평가 (Evaluation of vibration property and machinability of spindle system in high speed machining center)

  • 김전하;강명창;김정석;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.16-21
    • /
    • 2002
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation fer the HMC is not sufficiently performed and the efficient cutting conditions aren't selected, a great loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented from the analysis of acceleration in idling. The Machinability fur the TiAlN coated flat end mill and STD11( $H_{R}$C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions and slenderness ratio and a low response of tool dynamometer in high speed is proved. The resonance spindle speed is identified through the tool wear and natural frequency test.t.

  • PDF

고속 스핀들의 동적거동과 밸런싱 해석 (Analysis of Dynamic Behavior and Balancing of High Speed Spindle)

  • 구자함;권순구;김종순
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.238-244
    • /
    • 2017
  • 공작기계 응용에 있어서 고속 및 고효율 가공의 추세는 스핀들의 고속화를 지속적으로 요구하고 있다. 내장형 모터를 장착한 스핀들은 가공시스템의 구조를 단순하게 한다. 하지만 로터에는 불평형 질량에 의해 진동이 발생하며, 이를 제거하기 위한 밸런싱 작업은 필수적이다. 이 논문에서는 내장형 모터를 장착한 고속 스핀들의 동적거동을 해석하였다. 불평형 질량, 베어링 강성, 회전 속도의 변화에 따른 휘돌림 궤적을 해석하였고, 이를 저감시키는 방법을 모색하였다. 또한 Timoshenko 빔 요소를 적용하여 스핀들-베어링 시스템을 모델링하고, 영향 계수법을 적용하여 밸런싱 과정을 시뮬레이션 하였다. 스핀들의 경우, 불평형 하중이 작용할 때, 베어링 지지점에서 가장 작은 휘돌림 궤적이 나타났으며, 양단에서 가장 큰 휘돌림 궤적을 나타내었다. 스핀들의 회전속도가 증가함에 따라 스핀들 선단에서의 휘돌림 궤적도 증가하였다. 베어링의 강성이 커짐에 따라 휘돌림 궤적 또한 증가하였다. 밸런싱 전, 후의 휘돌림 궤적 반경은 최대 73%까지 감소함을 확인할 수 있었다. 이러한 연구 결과는 CNC 자동선반의 스핀들 고속화에 중요한 정보를 제공하고 있다.

공구 중량조건에 의한 주축변위 특성연구 (A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition)

  • 김종관
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

초고속 복합재료 공기정압 주축의 설계 (Design of High Speed Composite Air Spindle System)

  • 장승환;이대길;한흥삼
    • Composites Research
    • /
    • 제14권1호
    • /
    • pp.47-56
    • /
    • 2001
  • 공기정압 주축 시스템의 동적 안정성을 향상시키기 위해 섬유강화 복합재료 주축 자성 분말이 함침된 에폭시 복합재료 회전자 및 알루미늄 재질의 공구 연결부로 구성된 주축 시스템을 설계 및 제작하였다. 복합재료 공기정압 주축 시스템의 최적 설계를 위해 구조의 공진 주파수와 변형량 등을 고려하여 복합재료 주축의 적층 각도와 두께를 결정하였다 해석결과 설계된 복합재료 주축 시스템은 기존의 금속 주축 시스템에 비해 36% 더 높은 공진 주파수를 가지는 것을 알 수 있었다. 계산 및 실험 결과를 통해서 섬유강화 복합재료 주축과 자성 분말이 함침된 에폭시 복합재료 회전자로 구성된 복합재료 주축-회전자 시스템은 높은 비 강성으로 인해 기존 주축 시스템의 동적특성을 향상시킬 수 있음을 확인하였다.

  • PDF

AL6061-T4의 보링가공 시 절삭조건에 따른 직경 변화에 관한 연구 (A study on the Change of Diameter Based on Cutting Conditions in AL6061-T4 Boring Machining)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.49-54
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the change in the spindle speed and the feed rate on the diameter change of a hole using a boring cutter for the internal boring process of AL6061-T4 alloys. The experimental results are quantitatively analyzed by applying the factor analysis and the response surface analysis of the experimental design method. The tendency of the diameter change according to the change in the spindle speed and feed level is also evaluated. During the internal boring process of AL6061-T4 alloys, the main factor affecting the diameter change is the spindle speed in which the diameter decreases as the number of revolutions increases. In addition, the diameter tends to increase as the feed is increased; however, as the number of spindle revolutions increases, the influence of the feed decreases.

공작기계 주축용 스핀들 전동기 구동에 관한 연구 (A Study on the Spindle Motor Drive for the Spindle of Machining Center)

  • 한영성;안성찬;송종환;이학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2110-2112
    • /
    • 1997
  • The induction motor drive for the spindle of machining center is required to do not only a constant torque operation in low speed region(below base rpm), but also a constant power operation in high speed region(beyond base rpm). Also, control voltage shortage due to high speed operation must be overcome. The vector controlled inverter system with input 3 phase pwm converter is designed for that kind of condition. We experimented the performance of the inverter system with spindle motor made by Hyosung industries co.

  • PDF