• 제목/요약/키워드: spindle assembly

검색결과 58건 처리시간 0.027초

플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션 (Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle)

  • 김용조
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.

고정밀 연삭기용 주축시스템 설계 (Design of High Precision Spindle System for Grinding Machine)

  • 편영식;이건범;박정현;요꼬이요시유끼;여진욱;안건준;곽철훈
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.68-74
    • /
    • 2003
  • Any one of the high precision spindle systems and guide way systems, the high stiffness of structure, the error compensation during assembly, high accuracy control system is inevitable technology for development of high precision machine tools. Especially, among these, design of spindle system is one of the most important technologies leading high precision of machine tool and high quality of manufactured products. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect of heat cutting torque, cutting fore, and work-piece materials. The detailed design and analysis process are presented.

80GB/PLATTER 하드 디스크 드라이브 설계를 위한 스핀들-디스크 시스템 진동의 TMR 기여도 분석 (TMR Contribution Analysis of Spindle-Disk System Vibration for the High-Density Hard Disk Drive of 80GB/Platter)

  • 강성우;한윤식;오동호;황태연;김명업
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.58-64
    • /
    • 2001
  • An investigation of the TMR(Track Misregistration) requirements to achieve the capacity of 80GBytes/Platter in 7200rpm disk drive system is reported. This paper also gives an overview of the PES(Position Error Signal) characteristics in the 57,500TPI disk drive to estimate the required 95,000TPI-system PES. The TMR measured by PES are presented and decomposed in order to identify the portions and their contributions of the spindle-disk system vibration and HSA(Head-Stack-Assembly) system vibration respectively. A comprehensive review on the servo system is also presented to provide the practical limits of the modem servo architecture into TMR budget design. The decomposed PES energy distribution shows that the spindle-disk pack vibration is one of the top-ranking sources of the total TMR budget and its percentage contribution is about 50% considering all the other TMR sources.

  • PDF

고속 밀링 가공 시 주축 변위 측정을 통한 절삭력의 실시간 감시 (On-line Cutting Force Estimation by N[ensuring Spindle Displacement in High-Speed Milling Process)

  • 김종혁;김진현;김일해;안형준;장동영;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.133-134
    • /
    • 2006
  • A cylindrical capacitive displacement sensor (CCS) was developed and applied for monitoring end milling processes. Dynamic characteristics of a spindle-assembly were measured using the CCS and a designed magnetic exciter. The technique to extract the spindle displacement component caused only by cutting from the measured signals using the CCS was proposed in the paper. Using CCS signals and FRF (Frequency Response Function) derived from dynamics of the spindle tool system, dynamic cutting forces are estimated quantitatively.

  • PDF

알루미늄 열간 압연공정의 동력 전달용 커플링에 대한 최적화 설계 (Design Optimization on End Coupling as a Power Transmission Component for Aluminum Hot Rolling Process)

  • 이현승;이영신
    • 한국CDE학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2012
  • The End Coupling is main component of the aluminum hot roll process. The End Coupling is used for transmission of rotational power with heavy-duty load. Fracture of the End Coupling cause serious economic losses because an End Coupling is a very expensive component and it takes a long time to repair it. Therefore, preventing the destruction of the End Coupling is essential for ensuring a long mechanical life cycle. In this paper, the parametric study on the End Coupling was performed in order to minimize maximum stress under operation loads. To verify the interference of spindle assembly with modified End Coupling, kinematics simulation was performed by applying the various combination type and dynamic boundary condition of the spindle assembly. The interference of optimized model was not occurred during combination process and driving process. As a result of an optimum design for life extension on End Coupling, the maximum stress of modified End Coupling was lower than that of the initial model by 26%.

Functional Characterization of the Madlp, a Spindle Checkpoint Protein in Fission Yeast

  • Kim, In-Gyu;Rhee, Dong-Keun;Lee, Hee-Cheul;Lee, Joo;Kim, Hyong-Bai
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.694-700
    • /
    • 2005
  • Defects in the mitotic spindle or in the attachment of chromosomes to the spindle are believed to release an activated form of spindle checkpoint complex that inhibits APC-dependent ubiquitination and subsequently arrests the cell cycle at metaphase. When the spindle assembly is disrupted, the fission yeast mitotic arrest deficient (mad) mutants fail to arrest and rapidly lose viability. To enhance our understanding of the molecular mechanisms for the pathway of checkpoint function, the functional characterizations of Mad 1 p from Schizosaccharomyces pombe involved in this process have been carried out. Yeast two-hybrid and various deletion analyses of S. pombe Mad1 p reveal that the C terminus of Mad1p is critical for the binding of Mad2p and maintenance of Mad 1 p-Mad2p interaction. In addition, it was found. that the Mad1p region (residues 206-356) is essential for Mad1p-other checkpoint components. Mad1p truncating this region is sufficient to bind Mad2p but abolishes the checkpoint function, indicating that the checkpoint function is necessary for interaction of Mad 1 p-other checkpoint components. The possible functions of S. pombe Mad1p at the cell cycle checkpoint are discussed.

방추사와 연결되지 않은 단 하나의 키네토코어가 세포분열의 속도를 늦추는 기전 (Delay in the Cell Cycle by a Single Unattached Kinetochore)

  • 김태경
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.161-166
    • /
    • 2022
  • 세포의 유사분열 과정에서 Spindle Assembly Checkpoint (SAC)는 키네토코어와 방추체의 미세소관의 연결을 확인하여 오류 없이 염색체 분열이 진행되도록 돕는 역할을 한다. SAC는 30년이 넘는 오랜 기간 동안 많은 연구자들에 의해 연구되었다. 하지만 단 하나의 연결되지 않은 키네토코어가 SAC를 어떻게 활성화시킬 수 있는지에 대해서는 그 기작이 명확히 밝혀지지 않았다. SAC의 핵심 단백질은 Mad1, Mad2. Mad3 (상위 진핵세포에서는 BubR1), Bub1, Bub3, Cdc20를 포함하는데, 이 단백질 모두 SAC의 활성화에 필요하다. SAC의 활성화에 핵심적인 단계는 미세소관과 연결되지 않은 키네토코어에서 Mad2과 Cdc20가 결합하여 복합체를 만드는 것인데, 이 과정은 화학반응에서 쉽게 일어나지 않는 반응이다. Mad2와 Cdc20가 어떻게 키네토코어로 갈 수 있는지에 대해서는 잘 알려져 있었지만, 어떻게 Mad2과 Cdc20가 결합하여 복합체 만들 수 있는지에 대해서는 알려지지 않았다. 최근 다른 실험 방법을 이용한 두 개의 다른 논문들이 어떻게 미세소관과 연결되지 않은 키네토코어에서 Mad2-Cdc20 복합체를 형성하는 지에 대한 핵심적인 기작을 밝혔다. 이 연구들은 단 하나의 연결되지 않은 키네토코어가 SAC 활성화시킬 수 있다는 것에 대한 가설을 뒷받침하고 있다. 본 논문에서는 SAC 활성화에 중요한 주요 기작들을 정리하고, SAC에 과한 최신 연구들을 자세히 살펴본 후, 이 결과들이 세포 분열 연구 분야에 있어서 어떻게 기여했는지 논의할 것이다.

협소 공간 절삭가공용 앵글 헤드 스핀들 케이스 소형화에 대한 연구 (A Study on the Miniaturization of Angle Head Spindle Case for Cutting in Narrow Spaces)

  • 성철훈;한성길;김성훈;송철기
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.98-105
    • /
    • 2019
  • In order to improve the fuel economy and dynamic behavior of automobiles, the weight reduction tendency of automobile parts is obvious. Also, in order to maximize assembly and maintenance convenience, various parts are integrated and modularized. Multi-piece methods require many manufacturing processes and become a factor of lowering the strength of parts. It is advantageous to overcome the disadvantages by integrally manufacturing to reduce the processing steps and ensure the strength of the parts. However, when it is necessary to process in a narrow space inside the part, it is impossible to process with the existing spindle. The angle head spindle is only a component of a machine tool, but it is a core part that requires high technology and is highly utilizable in products requiring high precision machining. Therefore, various and continuous studies needs for angle head spindles in areas such as vibration absorption, operational safety, excellent dimensional stability, and strength. In this paper, we propose an optimal design for angle head spindle by performing structural analysis and shape optimization for angle head spindle gear and case.

볼과 소켓의 정밀 체결을 위한 회전성형 장치 (Rotary Forming Equipment for Precision Joining of the Ball and the Socket)

  • 전병윤;엄재근;전만수
    • 소성∙가공
    • /
    • 제16권2호
    • /
    • pp.132-137
    • /
    • 2007
  • A double roll rotary forming equipment is presented in this paper. The equipment is developed for joining the socket with the ball of a concave piston assembly with its geometrical tolerance requirements satisfied. The equipment is composed of a lathe, a double roll system and a roll pressing unit driven by the hydraulic system. The workpiece rotates by spindle chuck of the lathe while the double roll system approaches perpendicularly to the central line of the workpiece. The equipment is successfully applied to precision joining of the ball and the socket fur the concave piston assembly of a high pressure hydraulic pump.