• Title/Summary/Keyword: spinal implant

Search Result 42, Processing Time 0.017 seconds

Risk Factors for Prevertebral Soft Tissue Swelling Following Single-level Anterior Cervical Spine Surgery

  • Junsang Park;Sang Mook Kang;Yu Deok Won;Myung-Hoon Han;Jin Hwan Cheong;Byeong-Jin Ha;Je Il Ryu
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.716-725
    • /
    • 2023
  • Objective : Anterior cervical spine surgery (ACSS) is a common surgical procedure used to treat cervical spinal degenerative diseases. One of the complications associated with ACSS is prevertebral soft tissue swelling (PSTS), which can result in airway obstruction, dysphagia, and other adverse outcomes. This study aims to investigate the correlation between various cervical sagittal parameters and PSTS following single-level ACSS, as well as to identify independent risk factors for PSTS. Methods : A retrospective study conducted at a single institution. The study population included all patients who underwent single-level ACSS between January 2014 and December 2022. Patients with a history of cervical spine surgery or trauma were excluded from the study. The presence and severity of PSTS was assessed by reviewing pre- and postoperative imaging studies. The potential risk factors for PSTS that were examined include patient age, sex, body mass index, tobacco use, comorbidities, serum albumin levels, operative time, implant type, implanted level, and various cervical spine sagittal parameters. Multivariate linear regression analysis was performed to identify the independent risk factors for PSTS. Results : A total of 62 consecutive patients who underwent single-level ACSS over a 8-year period at a single institution were enrolled in this study. Only preoperative segmental angle showed positive correlation with PSTS among various cervical spine sagittal parameters (r=0.36, p=0.005). Artificial disc replacement showed a negative correlation with PSTS (β=-0.38, p=0.002), whereas the use of demineralized bone matrix (DBM) had a positive impact on PSTS (β=0.33, p=0.009). We found that male sex, lower preoperative serum albumin, and implantation of upper cervical level (above C5) were independent predictors for PSTS after single-level ACSS (β=1.21; 95% confidence interval [CI], 0.27 to 2.15; p=0.012; β=-1.63; 95% CI, -2.91 to -0.34; p=0.014; β=1.44; 95% CI, 0.38 to 2.49; p=0.008, respectively). Conclusion : Our study identified male sex, lower preoperative serum albumin levels, and upper cervical level involvement as independent risk factors for PSTS after single-level ACSS. These findings can help clinicians monitor high-risk patients and take preventive measures to reduce complications. Further research with larger sample sizes and prospective designs is needed to validate these findings.

Evaluation of Usefulness of Iterative Metal Artifact Reduction(IMAR) Algorithm In Proton Therapy Planning (양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가)

  • Han, Young Gil;Jang, Yo Jong;Kang, Dong Heok;Kim, Sun Young;Lee, Du Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Purpose: To evaluate the accuracy of the Iterative Metal Artifact Reduction (IMAR) algorithm in correcting CT (computed tomography) images distorted due to a metal artifact and to evaluate the usefulness when proton therapy plan was plan using the images on which IMAR algorithm was applied. Materials and Methods: We used a CT simulator to capture the images when metal was not inserted in the CIRS model 062 Phantom and when metal was inserted in it and Artifact occurred. We compared the differences in the CT numbers from the images without metal, with a metal artifact, and with IMAR algorithm by setting ROI 1 and ROI 2 at the same position in the phantom. In addition, CT numbers of the tissue equivalents located near the metal were compared. For the evaluation of Rando Phantom, CT was taken by inserting a titanium rod into the spinal region of the Rando phantom modelling a patient who underwent spinal implant surgery. In addition, the same proton therapy plan was established for each image, and the differences in Range at three sites were compared. Results: In the evaluation of CIRS Phantom, the CT numbers were -6.5 HU at ROI 1 and -10.5 HU at ROI 2 in the absence of metal. In the presence of metal, Fe, Ti, and W were -148.1, -45.1 and -151.7 HU at ROI 1, respectively, and when the IMAR algorithm was applied, it increased to -0.9, -2.0, -1.9 HU. In the presence of metal, they were 171.8, 63.9 and 177.0 HU at ROI 2 and after the application of IMAR algorithm they decreased to 10.0 6,7 and 8.1 HU. The CT numbers of the tissue equivalents were corrected close to the original CT numbers except those in the lung located farthest. In the evaluation of the Rando Phantom, the mean CT numbers were 9.9, -202.8, and 35.1 HU at ROI 1, and 9.0, 107.1, and 29 HU at ROI 2 in the absence, presence of metal, and in the application of IMAR algorithm. The difference between the absence of metal and the range of proton beam in the therapy was reduced on the average by 0.26 cm at point 1, 0.20 cm at point 2, and 0.12 cm at point 3 when the IMAR algorithm was applied. Conclusion: By applying the IMAR algorithm, the CT numbers were corrected close to the original ones obtained in the absence of metal. In the beam profile of the proton therapy, the difference in Range after applying the IMAR algorithm was reduced by 0.01 to 3.6 mm. There were slight differences as compared to the images absence of metal but it was thought that the application of the IMAR algorithm could result in less error compared with the conventional therapy.

  • PDF